142 research outputs found

    Computation Scheduling for Distributed Machine Learning with Straggling Workers

    Get PDF
    We study scheduling of computation tasks across n workers in a large scale distributed learning problem with the help of a master. Computation and communication delays are assumed to be random, and redundant computations are assigned to workers in order to tolerate stragglers. We consider sequential computation of tasks assigned to a worker, while the result of each computation is sent to the master right after its completion. Each computation round, which can model an iteration of the stochastic gradient descent (SGD) algorithm, is completed once the master receives k distinct computations, referred to as the computation target. Our goal is to characterize the average completion time as a function of the computation load, which denotes the portion of the dataset available at each worker, and the computation target. We propose two computation scheduling schemes that specify the tasks assigned to each worker, as well as their computation schedule, i.e., the order of execution. Assuming a general statistical model for computation and communication delays, we derive the average completion time of the proposed schemes. We also establish a lower bound on the minimum average completion time by assuming prior knowledge of the random delays. Experimental results carried out on Amazon EC2 cluster show a significant reduction in the average completion time over existing coded and uncoded computing schemes. It is also shown numerically that the gap between the proposed scheme and the lower bound is relatively small, confirming the efficiency of the proposed scheduling design.Comment: Submitted for publicatio

    Latency Analysis of Coded Computation Schemes over Wireless Networks

    Full text link
    Large-scale distributed computing systems face two major bottlenecks that limit their scalability: straggler delay caused by the variability of computation times at different worker nodes and communication bottlenecks caused by shuffling data across many nodes in the network. Recently, it has been shown that codes can provide significant gains in overcoming these bottlenecks. In particular, optimal coding schemes for minimizing latency in distributed computation of linear functions and mitigating the effect of stragglers was proposed for a wired network, where the workers can simultaneously transmit messages to a master node without interference. In this paper, we focus on the problem of coded computation over a wireless master-worker setup with straggling workers, where only one worker can transmit the result of its local computation back to the master at a time. We consider 3 asymptotic regimes (determined by how the communication and computation times are scaled with the number of workers) and precisely characterize the total run-time of the distributed algorithm and optimum coding strategy in each regime. In particular, for the regime of practical interest where the computation and communication times of the distributed computing algorithm are comparable, we show that the total run-time approaches a simple lower bound that decouples computation and communication, and demonstrate that coded schemes are Θ(log(n))\Theta(\log(n)) times faster than uncoded schemes
    corecore