4,285 research outputs found

    Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading (Extended Version)

    Full text link
    Mobile-edge computation offloading (MECO) offloads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we study resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA). First, for the TDMA MECO system with infinite or finite computation capacity, the optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under the constraint on computation latency. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function, which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Moreover, for the cloud with finite capacity, a sub-optimal resource-allocation algorithm is proposed to reduce the computation complexity for computing the threshold. Next, we consider the OFDMA MECO system, for which the optimal resource allocation is formulated as a non-convex mixed-integer problem. To solve this challenging problem and characterize its policy structure, a sub-optimal low-complexity algorithm is proposed by transforming the OFDMA problem to its TDMA counterpart. The corresponding resource allocation is derived by defining an average offloading priority function and shown to have close-to-optimal performance by simulation.Comment: Accepted to IEEE Trans. on Wireless Communicatio

    Efficient Resource Allocation for On-Demand Mobile-Edge Cloud Computing

    Full text link
    Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. Aiming at provisioning flexible on-demand mobile-edge cloud service, in this paper we propose a comprehensive framework consisting of a resource-efficient computation offloading mechanism for users and a joint communication and computation (JCC) resource allocation mechanism for network operator. Specifically, we first study the resource-efficient computation offloading problem for a user, in order to reduce user's resource occupation by determining its optimal communication and computation resource profile with minimum resource occupation and meanwhile satisfying the QoS constraint. We then tackle the critical problem of user admission control for JCC resource allocation, in order to properly select the set of users for resource demand satisfaction. We show the admission control problem is NP-hard, and hence develop an efficient approximation solution of a low complexity by carefully designing the user ranking criteria and rigourously derive its performance guarantee. To prevent the manipulation that some users may untruthfully report their valuations in acquiring mobile-edge cloud service, we further resort to the powerful tool of critical value approach to design truthful pricing scheme for JCC resource allocation. Extensive performance evaluation demonstrates that the proposed schemes can achieve superior performance for on-demand mobile-edge cloud computing.Comment: Xu Chen,Wenzhong Li,Sanglu Lu,Zhi Zhou,and Xiaoming Fu, "Efficient Resource Allocation for On-Demand Mobile-Edge Cloud Computing," IEEE Transactions on Vehicular Technology, June 201

    Computation Efficiency Maximization in OFDMA-Based Mobile Edge Computing Networks

    Full text link
    Computation-efficient resource allocation strategies are of crucial importance in mobile edge computing networks. However, few works have focused on this issue. In this letter, weighted sum computation efficiency (CE) maximization problems are formulated in a mobile edge computing (MEC) network with orthogonal frequency division multiple access (OFDMA). Both partial offloading mode and binary offloading mode are considered. The closed-form expressions for the optimal subchannel and power allocation schemes are derived. In order to address the intractable non-convex weighted sum-of ratio problems, an efficiently iterative algorithm is proposed. Simulation results demonstrate that the CE achieved by our proposed resource allocation scheme is better than that obtained by the benchmark schemes.Comment: This paper has been accepted by IEEE Communications Letter

    Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

    Full text link
    Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobile users in executing computation-intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Allocation (JTORA) is studied in order to maximize the users' task offloading gains, which is measured by the reduction in task completion time and energy consumption. The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the NP-hardness of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, our approach is to decompose the original problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Numerical simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches

    Multiuser Computation Offloading and Downloading for Edge Computing with Virtualization

    Full text link
    Mobile-edge computing (MEC) is an emerging technology for enhancing the computational capabilities of mobile devices and reducing their energy consumption via offloading complex computation tasks to the nearby servers. Multiuser MEC at servers is widely realized via parallel computing based on virtualization. Due to finite shared I/O resources, interference between virtual machines (VMs), called I/O interference, degrades the computation performance. In this paper, we study the problem of joint radio-and-computation resource allocation (RCRA) in multiuser MEC systems in the presence of I/O interference. Specifically, offloading scheduling algorithms are designed targeting two system performance metrics: sum offloading throughput maximization and sum mobile energy consumption minimization. Their designs are formulated as non-convex mixed-integer programming problems, which account for latency due to offloading, result downloading and parallel computing. A set of low-complexity algorithms are designed based on a decomposition approach and leveraging classic techniques from combinatorial optimization. The resultant algorithms jointly schedule offloading users, control their offloading sizes, and divide time for communication (offloading and downloading) and computation. They are either optimal or can achieve close-to-optimality as shown by simulation. Comprehensive simulation results demonstrate considering of I/O interference can endow on an offloading controller robustness against the performance-degradation factor

    Decentralized Computation Offloading and Resource Allocation in Heterogeneous Networks with Mobile Edge Computing

    Full text link
    We consider a heterogeneous network with mobile edge computing, where a user can offload its computation to one among multiple servers. In particular, we minimize the system-wide computation overhead by jointly optimizing the individual computation decisions, transmit power of the users, and computation resource at the servers. The crux of the problem lies in the combinatorial nature of multi-user offloading decisions, the complexity of the optimization objective, and the existence of inter-cell interference. Then, we decompose the underlying problem into two subproblems: i) the offloading decision, which includes two phases of user association and subchannel assignment, and ii) joint resource allocation, which can be further decomposed into the problems of transmit power and computation resource allocation. To enable distributed computation offloading, we sequentially apply a many-to-one matching game for user association and a one-to-one matching game for subchannel assignment. Moreover, the transmit power of offloading users is found using a bisection method with approximate inter-cell interference, and the computation resources allocated to offloading users is achieved via the duality approach. The proposed algorithm is shown to converge and is stable. Finally, we provide simulations to validate the performance of the proposed algorithm as well as comparisons with the existing frameworks.Comment: Submitted to IEEE Journa

    Energy-Efficient Mobile-Edge Computation Offloading for Applications with Shared Data

    Full text link
    Mobile-edge computation offloading (MECO) has been recognized as a promising solution to alleviate the burden of resource-limited Internet of Thing (IoT) devices by offloading computation tasks to the edge of cellular networks (also known as {\em cloudlet}). Specifically, latency-critical applications such as virtual reality (VR) and augmented reality (AR) have inherent collaborative properties since part of the input/output data are shared by different users in proximity. In this paper, we consider a multi-user fog computing system, in which multiple single-antenna mobile users running applications featuring shared data can choose between (partially) offloading their individual tasks to a nearby single-antenna cloudlet for remote execution and performing pure local computation. The mobile users' energy minimization is formulated as a convex problem, subject to the total computing latency constraint, the total energy constraints for individual data downloading, and the computing frequency constraints for local computing, for which classical Lagrangian duality can be applied to find the optimal solution. Based upon the semi-closed form solution, the shared data proves to be transmitted by only one of the mobile users instead of multiple ones. Besides, compared to those baseline algorithms without considering the shared data property or the mobile users' local computing capabilities, the proposed joint computation offloading and communications resource allocation provides significant energy saving.Comment: 6 pages, 3 figures, accepted by IEEE Globecom 201

    Energy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems

    Full text link
    Mobile edge computing (MEC) is an emerging paradigm that mobile devices can offload the computation-intensive or latency-critical tasks to the nearby MEC servers, so as to save energy and extend battery life. Unlike the cloud server, MEC server is a small-scale data center deployed at a wireless access point, thus it is highly sensitive to both radio and computing resource. In this paper, we consider an Orthogonal Frequency-Division Multiplexing Access (OFDMA) based multi-user and multi-MEC-server system, where the task offloading strategies and wireless resources allocation are jointly investigated. Aiming at minimizing the total energy consumption, we propose the joint offloading and resource allocation strategy for latency-critical applications. Through the bi-level optimization approach, the original NP-hard problem is decoupled into the lower-level problem seeking for the allocation of power and subcarrier and the upper-level task offloading problem. Simulation results show that the proposed algorithm achieves excellent performance in energy saving and successful offloading probability (SOP) in comparison with conventional schemes.Comment: 6 pages, 5 figures, to appear in IEEE ICC 2018, May 20-2

    Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge Computing Systems

    Full text link
    In mobile edge computing (MEC) systems, edge service caching refers to pre-storing the necessary programs for executing computation tasks at MEC servers. At resource-constrained edge servers, service caching placement is in general a complicated problem that highly correlates to the offloading decisions of computation tasks. In this paper, we consider a single edge server that assists a mobile user (MU) in executing a sequence of computation tasks. In particular, the MU can run its customized programs at the edge server, while the server can selectively cache the previously generated programs for future service reuse. To minimize the computation delay and energy consumption of the MU, we formulate a mixed integer non-linear programming (MINLP) that jointly optimizes the service caching placement, computation offloading, and system resource allocation. We first derive the closed-form expressions of the optimal resource allocation, and subsequently transform the MINLP into an equivalent pure 0-1 integer linear programming (ILP). To further reduce the complexity in solving the ILP, we exploit the underlying structures in optimal solutions, and devise a reduced-complexity alternating minimization technique to update the caching placement and offloading decision alternately. Simulations show that the proposed techniques achieve substantial resource savings compared to other representative benchmark methods.Comment: The paper has been accepted for publication by IEEE Transactions on Wireless Communications (April 2020

    Computation Efficiency Maximization in Wireless-Powered Mobile Edge Computing Networks

    Full text link
    Energy-efficient computation is an inevitable trend for mobile edge computing (MEC) networks. Resource allocation strategies for maximizing the computation efficiency are critically important. In this paper, computation efficiency maximization problems are formulated in wireless-powered MEC networks under both partial and binary computation offloading modes. A practical non-linear energy harvesting model is considered. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) are considered and evaluated for offloading. The energy harvesting time, the local computing frequency, and the offloading time and power are jointly optimized to maximize the computation efficiency under the max-min fairness criterion. Two iterative algorithms and two alternative optimization algorithms are respectively proposed to address the non-convex problems formulated in this paper. Simulation results show that the proposed resource allocation schemes outperform the benchmark schemes in terms of user fairness. Moreover, a tradeoff is elucidated between the achievable computation efficiency and the total number of computed bits. Furthermore, simulation results demonstrate that the partial computation offloading mode outperforms the binary computation offloading mode and NOMA outperforms TDMA in terms of computation efficiency.Comment: This paper has been accepted for publication in IEEE Transactions on Wireless Communication
    • …
    corecore