425 research outputs found

    The Rice-Shapiro theorem in Computable Topology

    Full text link
    We provide requirements on effectively enumerable topological spaces which guarantee that the Rice-Shapiro theorem holds for the computable elements of these spaces. We show that the relaxation of these requirements leads to the classes of effectively enumerable topological spaces where the Rice-Shapiro theorem does not hold. We propose two constructions that generate effectively enumerable topological spaces with particular properties from wn--families and computable trees without computable infinite paths. Using them we propose examples that give a flavor of this class

    Approximation systems for functions in topological and in metric spaces

    Full text link
    A notable feature of the TTE approach to computability is the representation of the argument values and the corresponding function values by means of infinitistic names. Two ways to eliminate the using of such names in certain cases are indicated in the paper. The first one is intended for the case of topological spaces with selected indexed denumerable bases. Suppose a partial function is given from one such space into another one whose selected base has a recursively enumerable index set, and suppose that the intersection of base open sets in the first space is computable in the sense of Weihrauch-Grubba. Then the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable relation between indices of base sets containing the argument value and indices of base sets containing the corresponding function value.This result can be regarded as an improvement of a result of Korovina and Kudinov. The second way is applicable to metric spaces with selected indexed denumerable dense subsets. If a partial function is given from one such space into another one, then, under a semi-computability assumption concerning these spaces, the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable set of quadruples. Any of them consists of an index of element from the selected dense subset in the first space, a natural number encoding a rational bound for the distance between this element and the argument value, an index of element from the selected dense subset in the second space and a natural number encoding a rational bound for the distance between this element and the function value. One of the examples in the paper indicates that the computability of real functions can be characterized in a simple way by using the first way of elimination of the infinitistic names.Comment: 21 pages, published in Logical Methods in Computer Scienc

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n≥1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic

    Enumeration Reducibility in Closure Spaces with Applications to Logic and Algebra

    Full text link
    In many instances in first order logic or computable algebra, classical theorems show that many problems are undecidable for general structures, but become decidable if some rigidity is imposed on the structure. For example, the set of theorems in many finitely axiomatisable theories is nonrecursive, but the set of theorems for any finitely axiomatisable complete theory is recursive. Finitely presented groups might have an nonrecursive word problem, but finitely presented simple groups have a recursive word problem. In this article we introduce a topological framework based on closure spaces to show that many of these proofs can be obtained in a similar setting. We will show in particular that these statements can be generalized to cover arbitrary structures, with no finite or recursive presentation/axiomatization. This generalizes in particular work by Kuznetsov and others. Examples from first order logic and symbolic dynamics will be discussed at length

    Compact manifolds with computable boundaries

    Full text link
    We investigate conditions under which a co-computably enumerable closed set in a computable metric space is computable and prove that in each locally computable computable metric space each co-computably enumerable compact manifold with computable boundary is computable. In fact, we examine the notion of a semi-computable compact set and we prove a more general result: in any computable metric space each semi-computable compact manifold with computable boundary is computable. In particular, each semi-computable compact (boundaryless) manifold is computable

    Uniform test of algorithmic randomness over a general space

    Get PDF
    The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Loef), and to arbitrary distributions (by Levin). We recall the main ideas and problems of Levin's theory, and report further progress in the same framework. - We allow non-compact spaces (like the space of continuous functions, underlying the Brownian motion). - The uniform test (deficiency of randomness) d_P(x) (depending both on the outcome x and the measure P should be defined in a general and natural way. - We see which of the old results survive: existence of universal tests, conservation of randomness, expression of tests in terms of description complexity, existence of a universal measure, expression of mutual information as "deficiency of independence. - The negative of the new randomness test is shown to be a generalization of complexity in continuous spaces; we show that the addition theorem survives. The paper's main contribution is introducing an appropriate framework for studying these questions and related ones (like statistics for a general family of distributions).Comment: 40 pages. Journal reference and a slight correction in the proof of Theorem 7 adde

    The descriptive theory of represented spaces

    Full text link
    This is a survey on the ongoing development of a descriptive theory of represented spaces, which is intended as an extension of both classical and effective descriptive set theory to deal with both sets and functions between represented spaces. Most material is from work-in-progress, and thus there may be a stronger focus on projects involving the author than an objective survey would merit.Comment: survey of work-in-progres
    • …
    corecore