15,183 research outputs found

    Model Theoretic Complexity of Automatic Structures

    Get PDF
    We study the complexity of automatic structures via well-established concepts from both logic and model theory, including ordinal heights (of well-founded relations), Scott ranks of structures, and Cantor-Bendixson ranks (of trees). We prove the following results: 1) The ordinal height of any automatic well- founded partial order is bounded by \omega^\omega ; 2) The ordinal heights of automatic well-founded relations are unbounded below the first non-computable ordinal; 3) For any computable ordinal there is an automatic structure of Scott rank at least that ordinal. Moreover, there are automatic structures of Scott rank the first non-computable ordinal and its successor; 4) For any computable ordinal, there is an automatic successor tree of Cantor-Bendixson rank that ordinal.Comment: 23 pages. Extended abstract appeared in Proceedings of TAMC '08, LNCS 4978 pp 514-52

    Classifications of Computable Structures

    Get PDF
    Let K be a family of structures, closed under isomorphism, in a fixed computable language. We consider effective lists of structures from K such that every structure in K is isomorphic to exactly one structure on the list. Such a list is called a computable classification of K, up to isomorphism. Using the technique of Friedberg enumeration, we show that there is a computable classification of the family of computable algebraic fields, and that with a 0\u27-oracle, we can obtain similar classifications of the families of computable equivalence structures and of computable finite-branching trees. However, there is no computable classification of the latter, nor of the family of computable torsion-free abelian groups of rank 1, even though these families are both closely allied with computable algebraic fields

    Classification from a computable viewpoint

    Get PDF
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we describe some recent work on classification in computable structure theory. Section 1 gives some background from model theory and descriptive set theory. From model theory, we give sample structure and non-structure theorems for classes that include structures of arbitrary cardinality. We also describe the notion of Scott rank, which is useful in the more restricted setting of countable structures. From descriptive set theory, we describe the basic Polish space of structures for a fixed countable language with fixed countable universe. We give sample structure and non-structure theorems based on the complexity of the isomorphism relation, and on Borel embeddings. Section 2 gives some background on computable structures. We describe three approaches to classification for these structures. The approaches are all equivalent. However, one approach, which involves calculating the complexity of the isomorphism relation, has turned out to be more productive than the others. Section 3 describes results on the isomorphism relation for a number of mathematically interesting classes—various kinds of groups and fields. In Section 4, we consider a setting similar to that in descriptive set theory. We describe an effective analogue of Borel embedding which allows us to make distinctions even among classes of finite structures. Section 5 gives results on computable structures of high Scott rank. Some of these results make use of computable embeddings. Finally, in Section 6, we mention some open problems and possible directions for future work

    Classes of structures with no intermediate isomorphism problems

    Full text link
    We say that a theory TT is intermediate under effective reducibility if the isomorphism problems among its computable models is neither hyperarithmetic nor on top under effective reducibility. We prove that if an infinitary sentence TT is uniformly effectively dense, a property we define in the paper, then no extension of it is intermediate, at least when relativized to every oracle on a cone. As an application we show that no infinitary sentence whose models are all linear orderings is intermediate under effective reducibility relative to every oracle on a cone

    Tree-Automatic Well-Founded Trees

    Get PDF
    We investigate tree-automatic well-founded trees. Using Delhomme's decomposition technique for tree-automatic structures, we show that the (ordinal) rank of a tree-automatic well-founded tree is strictly below omega^omega. Moreover, we make a step towards proving that the ranks of tree-automatic well-founded partial orders are bounded by omega^omega^omega: we prove this bound for what we call upwards linear partial orders. As an application of our result, we show that the isomorphism problem for tree-automatic well-founded trees is complete for level Delta^0_{omega^omega} of the hyperarithmetical hierarchy with respect to Turing-reductions.Comment: Will appear in Logical Methods of Computer Scienc

    A computability theoretic equivalent to Vaught's conjecture

    Full text link
    We prove that, for every theory TT which is given by an Lω1,ω{\mathcal L}_{\omega_1,\omega} sentence, TT has less than 2ℵ02^{\aleph_0} many countable models if and only if we have that, for every X∈2ωX\in 2^\omega on a cone of Turing degrees, every XX-hyperarithmetic model of TT has an XX-computable copy. We also find a concrete description, relative to some oracle, of the Turing-degree spectra of all the models of a counterexample to Vaught's conjecture
    • …
    corecore