1,308 research outputs found

    Effectively Open Real Functions

    Get PDF
    A function f is continuous iff the PRE-image f^{-1}[V] of any open set V is open again. Dual to this topological property, f is called OPEN iff the IMAGE f[U] of any open set U is open again. Several classical Open Mapping Theorems in Analysis provide a variety of sufficient conditions for openness. By the Main Theorem of Recursive Analysis, computable real functions are necessarily continuous. In fact they admit a well-known characterization in terms of the mapping V+->f^{-1}[V] being EFFECTIVE: Given a list of open rational balls exhausting V, a Turing Machine can generate a corresponding list for f^{-1}[V]. Analogously, EFFECTIVE OPENNESS requires the mapping U+->f[U] on open real subsets to be effective. By effectivizing classical Open Mapping Theorems as well as from application of Tarski's Quantifier Elimination, the present work reveals several rich classes of functions to be effectively open.Comment: added section on semi-algebraic functions; to appear in Proc. http://cca-net.de/cca200

    Fourier spectra of measures associated with algorithmically random Brownian motion

    Full text link
    In this paper we study the behaviour at infinity of the Fourier transform of Radon measures supported by the images of fractal sets under an algorithmically random Brownian motion. We show that, under some computability conditions on these sets, the Fourier transform of the associated measures have, relative to the Hausdorff dimensions of these sets, optimal asymptotic decay at infinity. The argument relies heavily on a direct characterisation, due to Asarin and Pokrovskii, of algorithmically random Brownian motion in terms of the prefix free Kolmogorov complexity of finite binary sequences. The study also necessitates a closer look at the potential theory over fractals from a computable point of view.Comment: 24 page

    Closed Choice and a Uniform Low Basis Theorem

    Get PDF
    We study closed choice principles for different spaces. Given information about what does not constitute a solution, closed choice determines a solution. We show that with closed choice one can characterize several models of hypercomputation in a uniform framework using Weihrauch reducibility. The classes of functions which are reducible to closed choice of the singleton space, of the natural numbers, of Cantor space and of Baire space correspond to the class of computable functions, of functions computable with finitely many mind changes, of weakly computable functions and of effectively Borel measurable functions, respectively. We also prove that all these classes correspond to classes of non-deterministically computable functions with the respective spaces as advice spaces. Moreover, we prove that closed choice on Euclidean space can be considered as "locally compact choice" and it is obtained as product of closed choice on the natural numbers and on Cantor space. We also prove a Quotient Theorem for compact choice which shows that single-valued functions can be "divided" by compact choice in a certain sense. Another result is the Independent Choice Theorem, which provides a uniform proof that many choice principles are closed under composition. Finally, we also study the related class of low computable functions, which contains the class of weakly computable functions as well as the class of functions computable with finitely many mind changes. As one main result we prove a uniform version of the Low Basis Theorem that states that closed choice on Cantor space (and the Euclidean space) is low computable. We close with some related observations on the Turing jump operation and its initial topology

    Connected Choice and the Brouwer Fixed Point Theorem

    Get PDF
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than or equal to two in the sense that it is computably equivalent to Weak K\H{o}nig's Lemma. While we can present two independent proofs for dimension three and upwards that are either based on a simple geometric construction or a combinatorial argument, the proof for dimension two is based on a more involved inverse limit construction. The connected choice operation in dimension one is known to be equivalent to the Intermediate Value Theorem; we prove that this problem is not idempotent in contrast to the case of dimension two and upwards. We also prove that Lipschitz continuity with Lipschitz constants strictly larger than one does not simplify finding fixed points. Finally, we prove that finding a connectedness component of a closed subset of the Euclidean unit cube of any dimension greater or equal to one is equivalent to Weak K\H{o}nig's Lemma. In order to describe these results, we introduce a representation of closed subsets of the unit cube by trees of rational complexes.Comment: 36 page

    Effectivity on Continuous Functions in Topological Spaces

    Get PDF
    AbstractIn this paper we investigate aspects of effectivity and computability on partial continuous functions in topological spaces. We use the framework of TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations. We generalize the representations introduced in [Weihrauch, K., “Computable Analysis,” Springer, Berlin, 2000] for the Euclidean case to computable T0-spaces and computably locally compact Hausdorff spaces respectively. We show their equivalence and in particular, prove an effective version of the Stone-Weierstrass approximation theorem
    • …
    corecore