47 research outputs found

    A Homological Theory of Functions: Nonuniform Boolean Complexity Separation and VC Dimension Bound Via Algebraic Topology, and a Homological Farkas Lemma

    Get PDF
    In computational complexity, a complexity class is given by a set of problems or functions, and a basic challenge is to show separations of complexity classes A != B especially when A is known to be a subset of B. In this paper we introduce a homological theory of functions that can be used to establish complexity separations, while also providing other interesting consequences. We propose to associate a topological space S_A to each class of functions A, such that, to separate complexity classes A from a superclass B\u27, it suffices to observe a change in "the number of holes", i.e. homology, in S_A as a subclass B of B\u27 is added to A. In other words, if the homologies of S_A and S_{A union B} are different, then A != B\u27. We develop the underlying theory of functions based on homological commutative algebra and Stanley-Reisner theory, and prove a "maximal principle" for polynomial threshold functions that is used to recover Aspnes, Beigel, Furst, and Rudich\u27s characterization of the polynomial threshold degree of symmetric functions. A surprising coincidence is demonstrated, where, roughly speaking, the maximal dimension of "holes" in S_A upper bounds the VC dimension of A, with equality for common computational cases such as the class of polynomial threshold functions or the class of linear functionals over the finite field of 2 elements, or common algebraic cases such as when the Stanley-Reisner ring of S_A is Cohen-Macaulay. As another interesting application of our theory, we prove a result that a priori has nothing to do with complexity separation: it characterizes when a vector subspace intersects the positive cone, in terms of homological conditions. By analogy to Farkas\u27 result doing the same with linear conditions, we call our theorem the Homological Farkas Lemma

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Multiscale and High-Dimensional Problems

    Get PDF
    High-dimensional problems appear naturally in various scientific areas. Two primary examples are PDEs describing complex processes in computational chemistry and physics, and stochastic/ parameter-dependent PDEs arising in uncertainty quantification and optimal control. Other highly visible examples are big data analysis including regression and classification which typically encounters high-dimensional data as input and/or output. High dimensional problems cannot be solved by traditional numerical techniques, because of the so-called curse of dimensionality. Rather, they require the development of novel theoretical and computational approaches to make them tractable and to capture fine resolutions and relevant features. Paradoxically, increasing computational power may even serve to heighten this demand, since the wealth of new computational data itself becomes a major obstruction. Extracting essential information from complex structures and developing rigorous models to quantify the quality of information in a high dimensional setting constitute challenging tasks from both theoretical and numerical perspective. The last decade has seen the emergence of several new computational methodologies which address the obstacles to solving high dimensional problems. These include adaptive methods based on mesh refinement or sparsity, random forests, model reduction, compressed sensing, sparse grid and hyperbolic wavelet approximations, and various new tensor structures. Their common features are the nonlinearity of the solution method that prioritize variables and separate solution characteristics living on different scales. These methods have already drastically advanced the frontiers of computability for certain problem classes. This workshop proposed to deepen the understanding of the underlying mathematical concepts that drive this new evolution of computational methods and to promote the exchange of ideas emerging in various disciplines about how to treat multiscale and high-dimensional problems

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore