182 research outputs found

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    Extending the Reach of the Point-To-Set Principle

    Get PDF
    The point-to-set principle of J. Lutz and N. Lutz (2018) has recently enabled the theory of computing to be used to answer open questions about fractal geometry in Euclidean spaces Rn\mathbb{R}^n. These are classical questions, meaning that their statements do not involve computation or related aspects of logic. In this paper we extend the reach of the point-to-set principle from Euclidean spaces to arbitrary separable metric spaces XX. We first extend two fractal dimensions--computability-theoretic versions of classical Hausdorff and packing dimensions that assign dimensions dim(x)\dim(x) and Dim(x)\textrm{Dim}(x) to individual points xXx\in X--to arbitrary separable metric spaces and to arbitrary gauge families. Our first two main results then extend the point-to-set principle to arbitrary separable metric spaces and to a large class of gauge families. We demonstrate the power of our extended point-to-set principle by using it to prove new theorems about classical fractal dimensions in hyperspaces. (For a concrete computational example, the stages E0,E1,E2,E_0, E_1, E_2, \ldots used to construct a self-similar fractal EE in the plane are elements of the hyperspace of the plane, and they converge to EE in the hyperspace.) Our third main result, proven via our extended point-to-set principle, states that, under a wide variety of gauge families, the classical packing dimension agrees with the classical upper Minkowski dimension on all hyperspaces of compact sets. We use this theorem to give, for all sets EE that are analytic, i.e., Σ11\mathbf{\Sigma}^1_1, a tight bound on the packing dimension of the hyperspace of EE in terms of the packing dimension of EE itself

    The complexity of parameters for probabilistic and quantum computation

    Get PDF
    In this dissertation we study some effects of allowing computational models that use parameters whose own computational complexity has a strong effect on the computational complexity of the languages computable from the model. We show that in the probabilistic and quantum models there are parameter sets that allow one to obtain noncomputable outcomes;In Chapter 3 we define BP[beta]P the BPP class based on a coin with bias [beta]. We then show that if [beta] is BPP-computable then it is the case that BP[beta]P = BPP. We also show that each language L in P/CLog is in BP[beta]P for some [beta]. Hence there are some [beta] from which we can compute noncomputable languages. We also examine the robustness of the class BPP with respect to small variations from fairness in the coin;In Chapter 4 we consider measures that are based on polynomial-time computable sequences of biased coins in which the biases are bounded away from both zero and one (strongly positive P-sequences). We show that such a sequence [vector][beta] generates a measure [mu][vector][beta] equivalent to the uniform measure in the sense that if C is a class of languages closed under positive, polynomial-time, truth-table reductions with queries of linear length then C has [mu][vector][beta]-measure zero if and only if it has measure zero relative to the uniform measure [mu]. The classes P, NP, BPP, P/Poly, PH, and PSPACE are among those to which this result applies. Thus the measures of these much-studied classes are robust with respect to changes of this type in the underlying probability measure;In Chapter 5 we introduce the quantum computation model and the quantum complexity class BQP. We claim that the computational complexity of the amplitudes is a critical factor in determining the languages computable using the quantum model. Using results from chapter 3 we show that the quantum model can also compute noncomputable languages from some amplitude sets. Finally, we determine a restriction on the amplitude set to limit the model to the range of languages implicit in others\u27 typical meaning of the class BQP

    Universal Prediction

    Get PDF
    In this thesis I investigate the theoretical possibility of a universal method of prediction. A prediction method is universal if it is always able to learn from data: if it is always able to extrapolate given data about past observations to maximally successful predictions about future observations. The context of this investigation is the broader philosophical question into the possibility of a formal specification of inductive or scientific reasoning, a question that also relates to modern-day speculation about a fully automatized data-driven science. I investigate, in particular, a proposed definition of a universal prediction method that goes back to Solomonoff (1964) and Levin (1970). This definition marks the birth of the theory of Kolmogorov complexity, and has a direct line to the information-theoretic approach in modern machine learning. Solomonoff's work was inspired by Carnap's program of inductive logic, and the more precise definition due to Levin can be seen as an explicit attempt to escape the diagonal argument that Putnam (1963) famously launched against the feasibility of Carnap's program. The Solomonoff-Levin definition essentially aims at a mixture of all possible prediction algorithms. An alternative interpretation is that the definition formalizes the idea that learning from data is equivalent to compressing data. In this guise, the definition is often presented as an implementation and even as a justification of Occam's razor, the principle that we should look for simple explanations. The conclusions of my investigation are negative. I show that the Solomonoff-Levin definition fails to unite two necessary conditions to count as a universal prediction method, as turns out be entailed by Putnam's original argument after all; and I argue that this indeed shows that no definition can. Moreover, I show that the suggested justification of Occam's razor does not work, and I argue that the relevant notion of simplicity as compressibility is already problematic itself

    Universal Prediction

    Get PDF
    In this dissertation I investigate the theoretical possibility of a universal method of prediction. A prediction method is universal if it is always able to learn what there is to learn from data: if it is always able to extrapolate given data about past observations to maximally successful predictions about future observations. The context of this investigation is the broader philosophical question into the possibility of a formal specification of inductive or scientific reasoning, a question that also touches on modern-day speculation about a fully automatized data-driven science. I investigate, in particular, a specific mathematical definition of a universal prediction method, that goes back to the early days of artificial intelligence and that has a direct line to modern developments in machine learning. This definition essentially aims to combine all possible prediction algorithms. An alternative interpretation is that this definition formalizes the idea that learning from data is equivalent to compressing data. In this guise, the definition is often presented as an implementation and even as a justification of Occam's razor, the principle that we should look for simple explanations. The conclusions of my investigation are negative. I show that the proposed definition cannot be interpreted as a universal prediction method, as turns out to be exposed by a mathematical argument that it was actually intended to overcome. Moreover, I show that the suggested justification of Occam's razor does not work, and I argue that the relevant notion of simplicity as compressibility is problematic itself

    Nonparametric General Reinforcement Learning

    No full text
    Reinforcement learning problems are often phrased in terms of Markov decision processes (MDPs). In this thesis we go beyond MDPs and consider reinforcement learning in environments that are non-Markovian, non-ergodic and only partially observable. Our focus is not on practical algorithms, but rather on the fundamental underlying problems: How do we balance exploration and exploitation? How do we explore optimally? When is an agent optimal? We follow the nonparametric realizable paradigm: we assume the data is drawn from an unknown source that belongs to a known countable class of candidates. First, we consider the passive (sequence prediction) setting, learning from data that is not independent and identically distributed. We collect results from artificial intelligence, algorithmic information theory, and game theory and put them in a reinforcement learning context: they demonstrate how an agent can learn the value of its own policy. Next, we establish negative results on Bayesian reinforcement learning agents, in particular AIXI. We show that unlucky or adversarial choices of the prior cause the agent to misbehave drastically. Therefore Legg-Hutter intelligence and balanced Pareto optimality, which depend crucially on the choice of the prior, are entirely subjective. Moreover, in the class of all computable environments every policy is Pareto optimal. This undermines all existing optimality properties for AIXI. However, there are Bayesian approaches to general reinforcement learning that satisfy objective optimality guarantees: We prove that Thompson sampling is asymptotically optimal in stochastic environments in the sense that its value converges to the value of the optimal policy. We connect asymptotic optimality to regret given a recoverability assumption on the environment that allows the agent to recover from mistakes. Hence Thompson sampling achieves sublinear regret in these environments. AIXI is known to be incomputable. We quantify this using the arithmetical hierarchy, and establish upper and corresponding lower bounds for incomputability. Further, we show that AIXI is not limit computable, thus cannot be approximated using finite computation. However there are limit computable ε-optimal approximations to AIXI. We also derive computability bounds for knowledge-seeking agents, and give a limit computable weakly asymptotically optimal reinforcement learning agent. Finally, our results culminate in a formal solution to the grain of truth problem: A Bayesian agent acting in a multi-agent environment learns to predict the other agents' policies if its prior assigns positive probability to them (the prior contains a grain of truth). We construct a large but limit computable class containing a grain of truth and show that agents based on Thompson sampling over this class converge to play ε-Nash equilibria in arbitrary unknown computable multi-agent environments

    Universal Prediction:A Philosophical Investigation

    Get PDF

    Nonparametric General Reinforcement Learning

    No full text
    Reinforcement learning problems are often phrased in terms of Markov decision processes (MDPs). In this thesis we go beyond MDPs and consider reinforcement learning in environments that are non-Markovian, non-ergodic and only partially observable. Our focus is not on practical algorithms, but rather on the fundamental underlying problems: How do we balance exploration and exploitation? How do we explore optimally? When is an agent optimal? We follow the nonparametric realizable paradigm: we assume the data is drawn from an unknown source that belongs to a known countable class of candidates. First, we consider the passive (sequence prediction) setting, learning from data that is not independent and identically distributed. We collect results from artificial intelligence, algorithmic information theory, and game theory and put them in a reinforcement learning context: they demonstrate how an agent can learn the value of its own policy. Next, we establish negative results on Bayesian reinforcement learning agents, in particular AIXI. We show that unlucky or adversarial choices of the prior cause the agent to misbehave drastically. Therefore Legg-Hutter intelligence and balanced Pareto optimality, which depend crucially on the choice of the prior, are entirely subjective. Moreover, in the class of all computable environments every policy is Pareto optimal. This undermines all existing optimality properties for AIXI. However, there are Bayesian approaches to general reinforcement learning that satisfy objective optimality guarantees: We prove that Thompson sampling is asymptotically optimal in stochastic environments in the sense that its value converges to the value of the optimal policy. We connect asymptotic optimality to regret given a recoverability assumption on the environment that allows the agent to recover from mistakes. Hence Thompson sampling achieves sublinear regret in these environments. AIXI is known to be incomputable. We quantify this using the arithmetical hierarchy, and establish upper and corresponding lower bounds for incomputability. Further, we show that AIXI is not limit computable, thus cannot be approximated using finite computation. However there are limit computable ε-optimal approximations to AIXI. We also derive computability bounds for knowledge-seeking agents, and give a limit computable weakly asymptotically optimal reinforcement learning agent. Finally, our results culminate in a formal solution to the grain of truth problem: A Bayesian agent acting in a multi-agent environment learns to predict the other agents' policies if its prior assigns positive probability to them (the prior contains a grain of truth). We construct a large but limit computable class containing a grain of truth and show that agents based on Thompson sampling over this class converge to play ε-Nash equilibria in arbitrary unknown computable multi-agent environments
    corecore