358 research outputs found

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201

    Local Rules for Computable Planar Tilings

    Full text link
    Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Fixed Point and Aperiodic Tilings

    Get PDF
    An aperiodic tile set was first constructed by R.Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals) We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. The flexibility of this construction allows us to construct a "robust" aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.Comment: v5: technical revision (positions of figures are shifted

    Aperiodic Subshifts of Finite Type on Groups

    Get PDF
    In this note we prove the following results: \bullet If a finitely presented group GG admits a strongly aperiodic SFT, then GG has decidable word problem. More generally, for f.g. groups that are not recursively presented, there exists a computable obstruction for them to admit strongly aperiodic SFTs. \bullet On the positive side, we build strongly aperiodic SFTs on some new classes of groups. We show in particular that some particular monster groups admits strongly aperiodic SFTs for trivial reasons. Then, for a large class of group GG, we show how to build strongly aperiodic SFTs over Z×G\mathbb{Z}\times G. In particular, this is true for the free group with 2 generators, Thompson's groups TT and VV, PSL2(Z)PSL_2(\mathbb{Z}) and any f.g. group of rational matrices which is bounded.Comment: New version. Adding results about monster group

    Enumeration Reducibility in Closure Spaces with Applications to Logic and Algebra

    Full text link
    In many instances in first order logic or computable algebra, classical theorems show that many problems are undecidable for general structures, but become decidable if some rigidity is imposed on the structure. For example, the set of theorems in many finitely axiomatisable theories is nonrecursive, but the set of theorems for any finitely axiomatisable complete theory is recursive. Finitely presented groups might have an nonrecursive word problem, but finitely presented simple groups have a recursive word problem. In this article we introduce a topological framework based on closure spaces to show that many of these proofs can be obtained in a similar setting. We will show in particular that these statements can be generalized to cover arbitrary structures, with no finite or recursive presentation/axiomatization. This generalizes in particular work by Kuznetsov and others. Examples from first order logic and symbolic dynamics will be discussed at length

    Computability and Tiling Problems

    Get PDF
    In this thesis we will present and discuss various results pertaining to tiling problems and mathematical logic, specifically computability theory. We focus on Wang prototiles, as defined in [32]. We begin by studying Domino Problems, and do not restrict ourselves to the usual problems concerning finite sets of prototiles. We first consider two domino problems: whether a given set of prototiles S has total planar tilings, which we denote TILE, or whether it has infinite connected but not necessarily total tilings, WTILE (short for ‘weakly tile’). We show that both TILE ≡m ILL ≡m WTILE, and thereby both TILE and WTILE are Σ11-complete. We also show that the opposite problems, ¬TILE and SNT (short for ‘Strongly Not Tile’) are such that ¬TILE ≡m WELL ≡m SNT and so both ¬TILE and SNT are both Π11-complete. Next we give some consideration to the problem of whether a given (infinite) set of prototiles is periodic or aperiodic. We study the sets PTile of periodic tilings, and ATile of aperiodic tilings. We then show that both of these sets are complete for the class of problems of the form (Σ1 1 ∧Π1 1). We also present results for finite versions of these tiling problems. We then move on to consider the Weihrauch reducibility for a general total tiling principle CT as well as weaker principles of tiling, and show that there exist Weihrauch equivalences to closed choice on Baire space, Cωω. We also show that all Domino Problems that tile some infinite connected region are Weihrauch reducible to Cωω. Finally, we give a prototile set of 15 prototiles that can encode any Elementary CellularAutomaton(ECA). We make use of an unusual tileset, based on hexagons and lozenges that we have not seen in the literature before, in order to achieve this
    corecore