2,635 research outputs found

    Computability in Europe 2008

    Full text link

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Computable de Finetti measures

    Full text link
    We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.Comment: 32 pages. Final journal version; expanded somewhat, with minor corrections. To appear in Annals of Pure and Applied Logic. Extended abstract appeared in Proceedings of CiE '09, LNCS 5635, pp. 218-23

    A constructive version of Birkhoff's ergodic theorem for Martin-L\"of random points

    Get PDF
    A theorem of Ku\v{c}era states that given a Martin-L\"of random infinite binary sequence {\omega} and an effectively open set A of measure less than 1, some tail of {\omega} is not in A. We first prove several results in the same spirit and generalize them via an effective version of a weak form of Birkhoff's ergodic theorem. We then use this result to get a stronger form of it, namely a very general effective version of Birkhoff's ergodic theorem, which improves all the results previously obtained in this direction, in particular those of V'Yugin, Nandakumar and Hoyrup, Rojas.Comment: Improved version of the CiE'10 paper, with the strong form of Birkhoff's ergodic theorem for random point

    Connected Choice and the Brouwer Fixed Point Theorem

    Get PDF
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than or equal to two in the sense that it is computably equivalent to Weak K\H{o}nig's Lemma. While we can present two independent proofs for dimension three and upwards that are either based on a simple geometric construction or a combinatorial argument, the proof for dimension two is based on a more involved inverse limit construction. The connected choice operation in dimension one is known to be equivalent to the Intermediate Value Theorem; we prove that this problem is not idempotent in contrast to the case of dimension two and upwards. We also prove that Lipschitz continuity with Lipschitz constants strictly larger than one does not simplify finding fixed points. Finally, we prove that finding a connectedness component of a closed subset of the Euclidean unit cube of any dimension greater or equal to one is equivalent to Weak K\H{o}nig's Lemma. In order to describe these results, we introduce a representation of closed subsets of the unit cube by trees of rational complexes.Comment: 36 page

    Products of effective topological spaces and a uniformly computable Tychonoff Theorem

    Full text link
    This article is a fundamental study in computable analysis. In the framework of Type-2 effectivity, TTE, we investigate computability aspects on finite and infinite products of effective topological spaces. For obtaining uniform results we introduce natural multi-representations of the class of all effective topological spaces, of their points, of their subsets and of their compact subsets. We show that the binary, finite and countable product operations on effective topological spaces are computable. For spaces with non-empty base sets the factors can be retrieved from the products. We study computability of the product operations on points, on arbitrary subsets and on compact subsets. For the case of compact sets the results are uniformly computable versions of Tychonoff's Theorem (stating that every Cartesian product of compact spaces is compact) for both, the cover multi-representation and the "minimal cover" multi-representation
    corecore