468 research outputs found

    The topological strong spatial mixing property and new conditions for pressure approximation

    Full text link
    In the context of stationary Zd\mathbb{Z}^d nearest-neighbour Gibbs measures μ\mu satisfying strong spatial mixing, we present a new combinatorial condition (the topological strong spatial mixing property (TSSM)) on the support of μ\mu sufficient for having an efficient approximation algorithm for topological pressure. We establish many useful properties of TSSM for studying strong spatial mixing on systems with hard constraints. We also show that TSSM is, in fact, necessary for strong spatial mixing to hold at high rate. Part of this work is an extension of results obtained by D. Gamarnik and D. Katz (2009), and B. Marcus and R. Pavlov (2013), who gave a special representation of topological pressure in terms of conditional probabilities.Comment: 40 pages, 8 figures. arXiv admin note: text overlap with arXiv:1309.1873 by other author

    Computability and dynamical systems

    Get PDF
    In this paper we explore results that establish a link between dynamical systems and computability theory (not numerical analysis). In the last few decades, computers have increasingly been used as simulation tools for gaining insight into dynamical behavior. However, due to the presence of errors inherent in such numerical simulations, with few exceptions, computers have not been used for the nobler task of proving mathematical results. Nevertheless, there have been some recent developments in the latter direction. Here we introduce some of the ideas and techniques used so far, and suggest some lines of research for further work on this fascinating topic

    Information complexity is computable

    Get PDF
    The information complexity of a function ff is the minimum amount of information Alice and Bob need to exchange to compute the function ff. In this paper we provide an algorithm for approximating the information complexity of an arbitrary function ff to within any additive error α>0\alpha > 0, thus resolving an open question as to whether information complexity is computable. In the process, we give the first explicit upper bound on the rate of convergence of the information complexity of ff when restricted to bb-bit protocols to the (unrestricted) information complexity of ff.Comment: 30 page

    The categorical basis of dynamical entropy

    Full text link
    Many different branches of theoretical and applied mathematics require a quantifiable notion of complexity. One such circumstance is a topological dynamical system - which involves a continuous self-map on a metric space. There are many notions of complexity one can assign to the repeated iterations of the map. One of the foundational discoveries of dynamical systems theory is that these have a common limit, known as the topological entropy of the system. We present a category-theoretic view of topological dynamical entropy, which reveals that the common limit is a consequence of the structural assumptions on these notions. One of the key tools developed is that of a qualifying pair of functors, which ensure a limit preserving property in a manner similar to the sandwiching theorem from Real Analysis. It is shown that the diameter and Lebesgue number of open covers of a compact space, form a qualifying pair of functors. The various notions of complexity are expressed as functors, and natural transformations between these functors lead to their joint convergence to the common limit

    Ergodic theory on coded shift spaces

    Full text link
    We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of H\"{o}lder continuous potentials based on the partition of the coded shift into its sequential set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the sequential and residual set. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga, Climenhaga and Thompson, and Pavlov.Comment: 43 page

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work
    corecore