212 research outputs found

    Detection of Compromised Accounts in Online Social Networks

    Get PDF
    Social behavioral profile appropriately reflects a user’s OSN activity patterns. People get right of entry to OSNs using both conventional computer PCs and new emerging cellular devices. With multiple billion customers global, OSNs are a brand new venue of innovation with many difficult studies issues. In this paper, we look at the social behaviors of OSN customers, i.e., their utilization of OSN offerings, and the utility of which in detecting the compromised accounts. We capture user conduct with the subsequent metrics: user connectivity, user hobby and user reactions. We validate and represent the person social hobby on OSN. The take a look at is based totally on distinct ClickStream data, the ClickStream data reveals key features of the social network workloads, consisting of how frequently humans connect to social networks and for a way lengthy, in addition to the kinds and sequences of activities that users conduct on those websites. We take note of the traits of social behaviors were view malicious behaviors of OSN users and show the social behavioral profiles can correctly differentiate man or woman OSN users and discover compromised account

    Rethinking Privacy and Security Mechanisms in Online Social Networks

    Get PDF
    With billions of users, Online Social Networks(OSNs) are amongst the largest scale communication applications on the Internet. OSNs enable users to easily access news from local and worldwide, as well as share information publicly and interact with friends. On the negative side, OSNs are also abused by spammers to distribute ads or malicious information, such as scams, fraud, and even manipulate public political opinions. Having achieved significant commercial success with large amount of user information, OSNs do treat the security and privacy of their users seriously and provide several mechanisms to reinforce their account security and information privacy. However, the efficacy of those measures is either not thoroughly validated or in need to be improved. In sight of cyber criminals and potential privacy threats on OSNs, we focus on the evaluations and improvements of OSN user privacy configurations, account security protection mechanisms, and trending topic security in this dissertation. We first examine the effectiveness of OSN privacy settings on protecting user privacy. Given each privacy configuration, we propose a corresponding scheme to reveal the target user\u27s basic profile and connection information starting from some leaked connections on the user\u27s homepage. Based on the dataset we collected on Facebook, we calculate the privacy exposure in each privacy setting type and measure the accuracy of our privacy inference schemes with different amount of public information. The evaluation results show that (1) a user\u27s private basic profile can be inferred with high accuracy and (2) connections can be revealed in a significant portion based on even a small number of directly leaked connections. Secondly, we propose a behavioral-profile-based method to detect OSN user account compromisation in a timely manner. Specifically, we propose eight behavioral features to portray a user\u27s social behavior. A user\u27s statistical distributions of those feature values comprise its behavioral profile. Based on the sample data we collected from Facebook, we observe that each user\u27s activities are highly likely to conform to its behavioral profile while two different user\u27s profile tend to diverge from each other, which can be employed for compromisation detection. The evaluation result shows that the more complete and accurate a user\u27s behavioral profile can be built the more accurately compromisation can be detected. Finally, we investigate the manipulation of OSN trending topics. Based on the dataset we collected from Twitter, we manifest the manipulation of trending and a suspect spamming infrastructure. We then measure how accurately the five factors (popularity, coverage, transmission, potential coverage, and reputation) can predict trending using an SVM classifier. We further study the interaction patterns between authenticated accounts and malicious accounts in trending. at last we demonstrate the threats of compromised accounts and sybil accounts to trending through simulation and discuss countermeasures against trending manipulation

    Real-Time Data Processing With Lambda Architecture

    Get PDF
    Data has evolved immensely in recent years, in type, volume and velocity. There are several frameworks to handle the big data applications. The project focuses on the Lambda Architecture proposed by Marz and its application to obtain real-time data processing. The architecture is a solution that unites the benefits of the batch and stream processing techniques. Data can be historically processed with high precision and involved algorithms without loss of short-term information, alerts and insights. Lambda Architecture has an ability to serve a wide range of use cases and workloads that withstands hardware and human mistakes. The layered architecture enhances loose coupling and flexibility in the system. This a huge benefit that allows understanding the trade-offs and application of various tools and technologies across the layers. There has been an advancement in the approach of building the LA due to improvements in the underlying tools. The project demonstrates a simplified architecture for the LA that is maintainable

    Vulnerabilities to Online Social Network Identity Deception Detection Research and Recommendations for Mitigation

    Get PDF
    Identity deception in online social networks is a pervasive problem. Ongoing research is developing methods for identity deception detection. However, the real-world efficacy of these methods is currently unknown because they have been evaluated largely through laboratory experiments. We present a review of representative state-of-the-art results on identity deception detection. Based on this analysis, we identify common methodological weaknesses for these approaches, and we propose recommendations that can increase their effectiveness for when they are applied in real-world environments

    Distributed detection of anomalous internet sessions

    Get PDF
    Financial service providers are moving many services online reducing their costs and facilitating customers¿ interaction. Unfortunately criminals have quickly found several ways to avoid most security measures applied to browsers and banking sites. The use of highly dangerous malware has become the most significant threat and traditional signature-detection methods are nowadays easily circumvented due to the amount of new samples and the use of sophisticated evasion techniques. Antivirus vendors and malware experts are pushed to seek for new methodologies to improve the identification and understanding of malicious applications behavior and their targets. Financial institutions are now playing an important role by deploying their own detection tools against malware that specifically affect their customers. However, most detection approaches tend to base on sequence of bytes in order to create new signatures. This thesis approach is based on new sources of information: the web logs generated from each banking session, the normal browser execution and customers mobile phone behavior. The thesis can be divided in four parts: The first part involves the introduction of the thesis along with the presentation of the problems and the methodology used to perform the experimentation. The second part describes our contributions to the research, which are based in two areas: *Server side: Weblogs analysis. We first focus on the real time detection of anomalies through the analysis of web logs and the challenges introduced due to the amount of information generated daily. We propose different techniques to detect multiple threats by deploying per user and global models in a graph based environment that will allow increase performance of a set of highly related data. *Customer side: Browser analysis. We deal with the detection of malicious behaviors from the other side of a banking session: the browser. Malware samples must interact with the browser in order to retrieve or add information. Such relation interferes with the normal behavior of the browser. We propose to develop models capable of detecting unusual patterns of function calls in order to detect if a given sample is targeting an specific financial entity. In the third part, we propose to adapt our approaches to mobile phones and Critical Infrastructures environments. The latest online banking attack techniques circumvent protection schemes such password verification systems send via SMS. Man in the Mobile attacks are capable of compromising mobile devices and gaining access to SMS traffic. Once the Transaction Authentication Number is obtained, criminals are free to make fraudulent transfers. We propose to model the behavior of the applications related messaging services to automatically detect suspicious actions. Real time detection of unwanted SMS forwarding can improve the effectiveness of second channel authentication and build on detection techniques applied to browsers and Web servers. Finally, we describe possible adaptations of our techniques to another area outside the scope of online banking: critical infrastructures, an environment with similar features since the applications involved can also be profiled. Just as financial entities, critical infrastructures are experiencing an increase in the number of cyber attacks, but the sophistication of the malware samples utilized forces to new detection approaches. The aim of the last proposal is to demonstrate the validity of out approach in different scenarios. Conclusions. Finally, we conclude with a summary of our findings and the directions for future work

    Exploiting altruism in social networks for friend-to-friend malware detection

    Get PDF
    pre-printWe propose a novel malware detection application- SocialScan-which enables friend-to-friend (f2f) malware scanning services among social peers, with scanning resource sharing governed by levels of social altruism. We show that with f2f sharing of resources, SocialScan achieves a 65% increase in the detection rate of 0- to 1-day-old malware among social peers as compared to the the detection rates of individual scanners. We also show that SocialScan provides greatly enhanced malware protection to social hubs

    POISED: Spotting Twitter Spam Off the Beaten Paths

    Get PDF
    Cybercriminals have found in online social networks a propitious medium to spread spam and malicious content. Existing techniques for detecting spam include predicting the trustworthiness of accounts and analyzing the content of these messages. However, advanced attackers can still successfully evade these defenses. Online social networks bring people who have personal connections or share common interests to form communities. In this paper, we first show that users within a networked community share some topics of interest. Moreover, content shared on these social network tend to propagate according to the interests of people. Dissemination paths may emerge where some communities post similar messages, based on the interests of those communities. Spam and other malicious content, on the other hand, follow different spreading patterns. In this paper, we follow this insight and present POISED, a system that leverages the differences in propagation between benign and malicious messages on social networks to identify spam and other unwanted content. We test our system on a dataset of 1.3M tweets collected from 64K users, and we show that our approach is effective in detecting malicious messages, reaching 91% precision and 93% recall. We also show that POISED's detection is more comprehensive than previous systems, by comparing it to three state-of-the-art spam detection systems that have been proposed by the research community in the past. POISED significantly outperforms each of these systems. Moreover, through simulations, we show how POISED is effective in the early detection of spam messages and how it is resilient against two well-known adversarial machine learning attacks
    • …
    corecore