408 research outputs found

    Vision-Aided Navigation for GPS-Denied Environments Using Landmark Feature Identification

    Get PDF
    In recent years, unmanned autonomous vehicles have been used in diverse applications because of their multifaceted capabilities. In most cases, the navigation systems for these vehicles are dependent on Global Positioning System (GPS) technology. Many applications of interest, however, entail operations in environments in which GPS is intermittent or completely denied. These applications include operations in complex urban or indoor environments as well as missions in adversarial environments where GPS might be denied using jamming technology. This thesis investigate the development of vision-aided navigation algorithms that utilize processed images from a monocular camera as an alternative to GPS. The vision-aided navigation approach explored in this thesis entails defining a set of inertial landmarks, the locations of which are known within the environment, and employing image processing algorithms to detect these landmarks in image frames collected from an onboard monocular camera. These vision-based landmark measurements effectively serve as surrogate GPS measurements that can be incorporated into a navigation filter. Several image processing algorithms were considered for landmark detection and this thesis focuses in particular on two approaches: the continuous adaptive mean shift (CAMSHIFT) algorithm and the adaptable compressive (ADCOM) tracking algorithm. These algorithms are discussed in detail and applied for the detection and tracking of landmarks in monocular camera images. Navigation filters are then designed that employ sensor fusion of accelerometer and rate gyro data from an inertial measurement unit (IMU) with vision-based measurements of the centroids of one or more landmarks in the scene. These filters are tested in simulated navigation scenarios subject to varying levels of sensor and measurement noise and varying number of landmarks. Finally, conclusions and recommendations are provided regarding the implementation of this vision-aided navigation approach for autonomous vehicle navigation systems

    Person Detection, Tracking and Identification by Mobile Robots Using RGB-D Images

    Get PDF
    This dissertation addresses the use of RGB-D images for six important tasks of mobile robots: face detection, face tracking, face pose estimation, face recognition, person de- tection and person tracking. These topics have widely been researched in recent years because they provide mobile robots with abilities necessary to communicate with humans in natural ways. The RGB-D images from a Microsoft Kinect cameras are expected to play an important role in improving both accuracy and computational costs of the proposed algorithms for mobile robots. We contribute some applications of the Microsoft Kinect camera for mobile robots and show their effectiveness by doing realistic experiments on our mobile robots. An important component for mobile robots to interact with humans in a natural way is real time multiple face detection. Various face detection algorithms for mobile robots have been proposed; however, almost all of them have not yet met the requirements of accuracy and speed to run in real time on a robot platform. In the scope of our re- search, we have developed a method of combining color and depth images provided by a Kinect camera and navigation information for face detection on mobile robots. We demonstrate several experiments with challenging datasets. Our results show that this method improves the accuracy and computational costs, and it runs in real time in indoor environments. Tracking faces in uncontrolled environments has still remained a challenging task be- cause the face as well as the background changes quickly over time and the face often moves through different illumination conditions. RGB-D images are beneficial for this task because the mobile robot can easily estimate the face size and improve the perfor- mance of face tracking in different distances between the mobile robot and the human. In this dissertation, we present a real time algorithm for mobile robots to track human faces accurately despite the fact that humans can move freely and far away from the camera or go through different illumination conditions in uncontrolled environments. We combine the algorithm of an adaptive correlation filter (David S. Bolme and Lui (2010)) with a Viola-Jones object detection (Viola and Jones (2001b)) to track the face. Furthermore,we introduce a new technique of face pose estimation, which is applied after tracking the face. On the tracked face, the algorithm of an adaptive correlation filter with a Viola-Jones object detection is also applied to reliably track the facial features including the two external eye corners and the nose. These facial features provide geometric cues to estimate the face pose robustly. We carefully analyze the accuracy of these approaches based on different datasets and show how they can robustly run on a mobile robot in uncontrolled environments. Both face tracking and face pose estimation play key roles as essential preprocessing steps for robust face recognition on mobile robots. The ability to recognize faces is a crucial element for human-robot interaction. Therefore, we pursue an approach for mobile robots to detect, track and recognize human faces accurately, even though they go through different illumination conditions. For the sake of improved accuracy, recognizing the tracked face is established by using an algorithm that combines local ternary patterns and collaborative representation based classification. This approach inherits the advantages of both collaborative representation based classification, which is fast and relatively accurate, and local ternary patterns, which is robust to misalignment of faces and complex illumination conditions. This combination enhances the efficiency of face recognition under different illumination and noisy conditions. Our method achieves high recognition rates on challenging face databases and can run in real time on mobile robots. An important application field of RGB-D images is person detection and tracking by mobile robots. Compared to classical RGB images, RGB-D images provide more depth information to locate humans more precisely and reliably. For this purpose, the mobile robot moves around in its environment and continuously detects and tracks people reliably, even when humans often change in a wide variety of poses, and are frequently occluded. We have improved the performance of face and upper body detection to enhance the efficiency of person detection in dealing with partial occlusions and changes in human poses. In order to handle higher challenges of complex changes of human poses and occlusions, we concurrently use a fast compressive tracker and a Kalman filter to track the detected humans. Experimental results on a challenging database show that our method achieves high performance and can run in real time on mobile robots

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Recent Developments in Video Surveillance

    Get PDF
    With surveillance cameras installed everywhere and continuously streaming thousands of hours of video, how can that huge amount of data be analyzed or even be useful? Is it possible to search those countless hours of videos for subjects or events of interest? Shouldn’t the presence of a car stopped at a railroad crossing trigger an alarm system to prevent a potential accident? In the chapters selected for this book, experts in video surveillance provide answers to these questions and other interesting problems, skillfully blending research experience with practical real life applications. Academic researchers will find a reliable compilation of relevant literature in addition to pointers to current advances in the field. Industry practitioners will find useful hints about state-of-the-art applications. The book also provides directions for open problems where further advances can be pursued
    • …
    corecore