755 research outputs found

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Target Detection Architecture for Resource Constrained Wireless Sensor Networks within Internet of Things

    Get PDF
    Wireless sensor networks (WSN) within Internet of Things (IoT) have the potential to address the growing detection and classi�cation requirements among many surveillance applications. RF sensing techniques are the next generation technologies which o�er distinct advantages over traditional passive means of sensing such as acoustic and seismic which are used for surveillance and target detection applications of WSN. RF sensing based WSN within IoT detect the presence of designated targets by transmitting RF signals into the sensing environment and observing the re ected echoes. In this thesis, an RF sensing based target detection architecture for surveillance applications of WSN has been proposed to detect the presence of stationary targets within the sensing environment. With multiple sensing nodes operating simultaneously within the sensing region, diversity among the sensing nodes in the choice of transmit waveforms is required. Existing multiple access techniques to accommodate multiple sensing nodes within the sensing environment are not suitable for RF sensing based WSN. In this thesis, a diversity in the choice of the transmit waveforms has been proposed and transmit waveforms which are suitable for RF sensing based WSN have been discussed. A criterion have been de�ned to quantify the ease of detecting the signal and energy e�ciency of the signal based on which ease of detection index and energy e�ciency index respectively have been generated. The waveform selection criterion proposed in this thesis takes the WSN sensing conditions into account and identi�es the optimum transmit waveform within the available choices of transmit waveforms based on their respective ease of detection and energy e�ciency indexes. A target detector analyses the received RF signals to make a decision regarding the existence or absence of targets within the sensing region. Existing target detectors which are discussed in the context of WSN do not take the factors such as interference and nature of the sensing environment into account. Depending on the nature of the sensing environment, in this thesis the sensing environments are classi�ed as homogeneous and heterogeneous sensing environments. Within homogeneous sensing environments the presence of interference from the neighbouring sensing nodes is assumed. A target detector has been proposed for WSN within homogeneous sensing environments which can reliably detect the presence of targets. Within heterogeneous sensing environments the presence of clutter and interfering waveforms is assumed. A target detector has been proposed for WSN within heterogeneous sensing environments to detect targets in the presence of clutter and interfering waveforms. A clutter estimation technique has been proposed to assist the proposed target detector to achieve increased target detection reliability in the presence of clutter. A combination of compressive and two-step target detection architectures has been proposed to reduce the transmission costs. Finally, a 2-stage target detection architecture has been proposed to reduce the computational complexity of the proposed target detection architecture

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Applications of Compressive Sampling Technique to Radar and Localization

    Get PDF
    During the last decade, the emerging technique of compressive sampling (CS) has become a popular subject in signal processing and sensor systems. In particular, CS breaks through the limits imposed by the Nyquist sampling theory and is able to substantially reduce the huge amount of data generated by different sources. The technique of CS has been successfully applied in signal acquisition, image compression, and data reduction. Although the theory of CS has been investigated for some radar and localization problems, several important questions have not been answered yet. For example, the performance of CS radar in a cluttered environment has not been comprehensively studied. Applying CS to passive radars and electronic warfare receivers is another concern that needs more attention. Also, it is well known that applying this strategy leads to extra computational costs which might be prohibitive in large-sized localization networks. In this chapter, we first discuss the practical issues in the process of implementing CS radars and localization systems. Then, we present some promising and efficient solutions to overcome the arising problems

    Adaptive MIMO Radar for Target Detection, Estimation, and Tracking

    Get PDF
    We develop and analyze signal processing algorithms to detect, estimate, and track targets using multiple-input multiple-output: MIMO) radar systems. MIMO radar systems have attracted much attention in the recent past due to the additional degrees of freedom they offer. They are commonly used in two different antenna configurations: widely-separated: distributed) and colocated. Distributed MIMO radar exploits spatial diversity by utilizing multiple uncorrelated looks at the target. Colocated MIMO radar systems offer performance improvement by exploiting waveform diversity. Each antenna has the freedom to transmit a waveform that is different from the waveforms of the other transmitters. First, we propose a radar system that combines the advantages of distributed MIMO radar and fully polarimetric radar. We develop the signal model for this system and analyze the performance of the optimal Neyman-Pearson detector by obtaining approximate expressions for the probabilities of detection and false alarm. Using these expressions, we adaptively design the transmit waveform polarizations that optimize the target detection performance. Conventional radar design approaches do not consider the goal of the target itself, which always tries to reduce its detectability. We propose to incorporate this knowledge about the goal of the target while solving the polarimetric MIMO radar design problem by formulating it as a game between the target and the radar design engineer. Unlike conventional methods, this game-theoretic design does not require target parameter estimation from large amounts of training data. Our approach is generic and can be applied to other radar design problems also. Next, we propose a distributed MIMO radar system that employs monopulse processing, and develop an algorithm for tracking a moving target using this system. We electronically generate two beams at each receiver and use them for computing the local estimates. Later, we efficiently combine the information present in these local estimates, using the instantaneous signal energies at each receiver to keep track of the target. Finally, we develop multiple-target estimation algorithms for both distributed and colocated MIMO radar by exploiting the inherent sparsity on the delay-Doppler plane. We propose a new performance metric that naturally fits into this multiple target scenario and develop an adaptive optimal energy allocation mechanism. We employ compressive sensing to perform accurate estimation from far fewer samples than the Nyquist rate. For colocated MIMO radar, we transmit frequency-hopping codes to exploit the frequency diversity. We derive an analytical expression for the block coherence measure of the dictionary matrix and design an optimal code matrix using this expression. Additionally, we also transmit ultra wideband noise waveforms that improve the system resolution and provide a low probability of intercept: LPI)

    RF Sensing Based Target Detector for Smart Sensing Within Internet of Things in Harsh Sensing Environments

    Get PDF
    In this paper, we explore surveillance and target detection applications of Internet of Things (IoT) with radio detection as the primary means of sensing. The problem of surveillance and target detection has found its place in numerous civilian and military applications , andIoTiswellsuitedtoaddress this problem. Radio frequency (RF) sensing techniques are the next generation technologies, which offer distinct advantages over traditional means of sensing used for surveillance and target detection applications of IoT. However, RF sensing techniques have yet to be widely researched due to lack of transmission and computational resources within IoT. Recent advancements in sensing, computing, and communication technologies have made radio detection enabled sensing techniques available to IoT. However, extensive research is yet to be done in developing reliable and energy efficient target detection algorithms for resource constrained IoT. In this paper, we have proposed a multi-sensor RF sensing-based target detection architecture for IoT. The proposed target detection architecture is adaptable to interference, which is caused due to the co-existence of sensor nodes within IoT and adopts smart sensing strategies to reliably detect the presence of the targets .A wave form selection criterion has been proposed to identify the optimum choice of transmit waveforms within a given set of sensing conditions to optimize the target detection reliability and power consumption within the IoT. A dual-stage target detection strategy has been proposed to reduce the computational burden and increase the lifetime of the sensor nodes

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge
    corecore