5,100 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach

    Full text link
    A key challenge of massive MTC (mMTC), is the joint detection of device activity and decoding of data. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. However, utilizing CS-based approaches for device detection along with channel estimation, and using the acquired estimates for coherent data transmission is suboptimal, especially when the goal is to convey only a few bits of data. First, we focus on the coherent transmission and demonstrate that it is possible to obtain more accurate channel state information by combining conventional estimators with CS-based techniques. Moreover, we illustrate that even simple power control techniques can enhance the device detection performance in mMTC setups. Second, we devise a new non-coherent transmission scheme for mMTC and specifically for grant-free random access. We design an algorithm that jointly detects device activity along with embedded information bits. The approach leverages elements from the approximate message passing (AMP) algorithm, and exploits the structured sparsity introduced by the non-coherent transmission scheme. Our analysis reveals that the proposed approach has superior performance compared to application of the original AMP approach.Comment: Submitted to IEEE Transactions on Communication

    Channel Estimation for mmWave Massive MIMO Based Access and Backhaul in Ultra-Dense Network

    Full text link
    Millimeter-wave (mmWave) massive MIMO used for access and backhaul in ultra-dense network (UDN) has been considered as the promising 5G technique. We consider such an heterogeneous network (HetNet) that ultra-dense small base stations (BSs) exploit mmWave massive MIMO for access and backhaul, while macrocell BS provides the control service with low frequency band. However, the channel estimation for mmWave massive MIMO can be challenging, since the pilot overhead to acquire the channels associated with a large number of antennas in mmWave massive MIMO can be prohibitively high. This paper proposes a structured compressive sensing (SCS)-based channel estimation scheme, where the angular sparsity of mmWave channels is exploited to reduce the required pilot overhead. Specifically, since the path loss for non-line-of-sight paths is much larger than that for line-of-sight paths, the mmWave massive channels in the angular domain appear the obvious sparsity. By exploiting such sparsity, the required pilot overhead only depends on the small number of dominated multipath. Moreover, the sparsity within the system bandwidth is almost unchanged, which can be exploited for the further improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterpart, and it can approach the performance bound.Comment: 6 pages, 5 figures. Millimeter-wave (mmWave), mmWave massive MIMO, compressive sensing (CS), hybrid precoding, channel estimation, access, backhaul, ultra-dense network (UDN), heterogeneous network (HetNet). arXiv admin note: substantial text overlap with arXiv:1604.03695, IEEE International Conference on Communications (ICC'16), May 2016, Kuala Lumpur, Malaysi
    • …
    corecore