358 research outputs found

    Compressive sensing based differential channel feedback for massive MIMO

    Full text link
    Massive multiple-input multiple-output (MIMO) is becoming a key technology for future 5G wireless communications. Channel feedback for massive MIMO is challenging due to the substantially increased dimension of MIMO channel matrix. In this letter, we propose a compressive sensing (CS) based differential channel feedback scheme to reduce the feedback overhead. Specifically, the temporal correlation of time-varying channels is exploited to generate the differential channel impulse response (CIR) between two CIRs in neighboring time slots, which enjoys a much stronger sparsity than the original sparse CIRs. Thus, the base station can recover the differential CIR from the highly compressed differential CIR under the framework of CS theory. Simulations show that the proposed scheme reduces the feedback overhead by about 20\% compared with the direct CS-based scheme

    Joint Channel Training and Feedback for FDD Massive MIMO Systems

    Full text link
    Massive multiple-input multiple-output (MIMO) is widely recognized as a promising technology for future 5G wireless communication systems. To achieve the theoretical performance gains in massive MIMO systems, accurate channel state information at the transmitter (CSIT) is crucial. Due to the overwhelming pilot signaling and channel feedback overhead, however, conventional downlink channel estimation and uplink channel feedback schemes might not be suitable for frequency-division duplexing (FDD) massive MIMO systems. In addition, these two topics are usually separately considered in the literature. In this paper, we propose a joint channel training and feedback scheme for FDD massive MIMO systems. Specifically, we firstly exploit the temporal correlation of time-varying channels to propose a differential channel training and feedback scheme, which simultaneously reduces the overhead for downlink training and uplink feedback. We next propose a structured compressive sampling matching pursuit (S-CoSaMP) algorithm to acquire a reliable CSIT by exploiting the structured sparsity of wireless MIMO channels. Simulation results demonstrate that the proposed scheme can achieve substantial reduction in the training and feedback overhead

    An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    Full text link
    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.Comment: Submitted to IEEE Journal of Selected Topics in Signal Processin

    Limited Feedback Massive MISO Systems with Trellis Coded Quantization for Correlated Channels

    Full text link
    In this paper, we propose trellis coded quantization (TCQ) based limited feedback techniques for massive multiple-input single-output (MISO) frequency division duplexing (FDD) systems in temporally and spatially correlated channels. We exploit the correlation present in the channel to effectively quantize channel direction information (CDI). For multiuser (MU) systems with matched-filter (MF) precoding, we show that the number of feedback bits required by the random vector quantization (RVQ) codebook to match even a small fraction of the perfect CDI signal-to-interference-plus-noise ratio (SINR) performance is large. With such large numbers of bits, the exhaustive search required by conventional codebook approaches make them infeasible for massive MISO systems. Motivated by this, we propose a differential TCQ scheme for temporally correlated channels that transforms the source constellation at each stage in a trellis using 2D translation and scaling techniques. We derive a scaling parameter for the source constellation as a function of the temporal correlation and the number of BS antennas. We also propose a TCQ based limited feedback scheme for spatially correlated channels where the channel is quantized directly without performing decorrelation at the receiver. Simulation results show that the proposed TCQ schemes outperform the existing noncoherent TCQ (NTCQ) schemes, by improving the spectral efficiency and beamforming gain of the system. The proposed differential TCQ also reduces the feedback overhead of the system compared to the differential NTCQ method.Comment: 13 pages, 18 figures, IEEE Transactions on Vehicular Technology, accepted for publicatio

    Hardware-In-the-Loop Measurements of the Multi-Carrier Compressed Sensing Multi-User Detection (MCSM) System

    Full text link
    MCSM is a recently proposed novel system concept to solve the massive access problem envisioned in future communication systems like 5G and industry 4.0 systems. This work focuses on the practical verification of the theoretical gains that MCSM provides using a Hardware-In-the-Loop (HIL) measurement setup. We present results in two different scenarios: (i) a LoS lab setup and (ii) a non-LoS machine hall. In both scenarios MCSM shows promising performance in terms of the number of supported users and the achieved reliability

    A Block Sparsity Based Estimator for mmWave Massive MIMO Channels with Beam Squint

    Full text link
    Multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication is a key technology for next generation wireless networks. One of the consequences of utilizing a large number of antennas with an increased bandwidth is that array steering vectors vary among different subcarriers. Due to this effect, known as beam squint, the conventional channel model is no longer applicable for mmWave massive MIMO systems. In this paper, we study channel estimation under the resulting non-standard model. To that aim, we first analyze the beam squint effect from an array signal processing perspective, resulting in a model which sheds light on the angle-delay sparsity of mmWave transmission. We next design a compressive sensing based channel estimation algorithm which utilizes the shift-invariant block-sparsity of this channel model. The proposed algorithm jointly computes the off-grid angles, the off-grid delays, and the complex gains of the multi-path channel. We show that the newly proposed scheme reflects the mmWave channel more accurately and results in improved performance compared to traditional approaches. We then demonstrate how this approach can be applied to recover both the uplink as well as the downlink channel in frequency division duplex (FDD) systems, by exploiting the angle-delay reciprocity of mmWave channels

    On Channel State Feedback Model and Overhead in Theoretical and Practical Views

    Full text link
    Channel state feedback plays an important role to the improvement of link performance in current wireless communication systems, and even more in the next generation. The feedback information, however, consumes the uplink bandwidth and thus generates overhead. In this paper, we investigate the impact of channel state feedback and propose an improved scheme to reduce the overhead in practical communication systems. Compared with existing schemes, we introduce a more accurate channel model to describe practical wireless channels and obtain the theoretical lower bounds of overhead for the periodical and aperiodical feedback schemes. The obtained theoretical results provide us the guidance to optimise the design of feedback systems, such as the number of bits used for quantizing channel states. We thus propose a practical feedback scheme that achieves low overhead and improved performance over currently widely used schemes such as zero holding. Simulation experiments confirm its advantages and suggest its potentially wide applications in the next generation of wireless systems.Comment: 13 pages, 14 figures, IEEE Transactions on Wireless Communication

    Trellis-Extended Codebooks and Successive Phase Adjustment: A Path from LTE-Advanced to FDD Massive MIMO Systems

    Full text link
    It is of great interest to develop efficient ways to acquire accurate channel state information (CSI) for frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems for backward compatibility. It is theoretically well known that the codebook size for CSI quantization should be increased as the number of transmit antennas becomes larger, and 3GPP long term evolution (LTE) and LTE-Advanced codebooks also follow this trend. Thus, in massive MIMO, it is hard to apply the conventional approach of using pre-defined vector-quantized codebooks for CSI quantization mainly because of codeword search complexity. In this paper, we propose a trellis-extended codebook (TEC) that can be easily harmonized with current wireless standards such as LTE or LTE-Advanced by extending standardized codebooks designed for 2, 4, or 8 antennas with trellis structures. TEC exploits a Viterbi decoder and convolutional encoder in channel coding as the CSI quantizer and the CSI reconstructer, respectively. By quantizing multiple channel entries simultaneously using standardized codebooks in a state transition of trellis search, TEC can achieve fractional bits per channel entry quantization to have a practical feedback overhead. Thus, TEC can solve both the complexity and the feedback overhead issues of CSI quantization in massive MIMO systems. We also develop trellis-extended successive phase adjustment (TE-SPA) which works as a differential codebook of TEC. This is similar to the dual codebook concept of LTE-Advanced. TE-SPA can reduce CSI quantization error even with lower feedback overhead in temporally correlated channels. Numerical results verify the effectiveness of the proposed schemes in FDD massive MIMO systems.Comment: 10 pages, 11 figures, accepted to IEEE Transactions on Wireless Communications, Nov. 201

    Superimposed Coding Based CSI Feedback Using 1-Bit Compressed Sensing

    Full text link
    In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compressed sensing (CS)-based CSI feedback method assisted by superimposed coding (SC) is proposed. Using 1-bit CS and SC techniques, the compressed support-set information and downlink CSI (DL-CSI) are superimposed on the uplink user data sequence (UL-US) and fed back to base station (BS). Compared with the SC-based feedback, the analysis and simulation results show that the UL-US's bit error ratio (BER) and the DL-CSI's accuracy can be improved in the proposed method, without using the exclusive uplink bandwidth resources to feed DL-CSI back to BS.Comment: 5 pages, 4 figure

    Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

    Full text link
    As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.Comment: 27 pages, 11 figure
    corecore