19,693 research outputs found

    Multi-source and Multi-feature Image Information Fusion Based on Compressive Sensing

    Get PDF
    Image fusion is a comprehensive information processing technique and its purpose is to enhance the reliability of the image via the processing of the redundant data among multiple images, improve the image definition and information content through fusion of the complementary information of multiple images so as to obtain the information of the objective or the scene in a more accurate, reliable and comprehensive manner. This paper uses the sparse representation method of compressive sensing theory, proposes a multi-source and multi-feature image information fusion method based on compressive sensing in accordance with the features of image fusion, performs sparsification processing on the source image with K-SVD algorithm and OMP algorithm to transfer from spatial domain to frequency domain and decomposes into low-frequency part and high-frequency park. Then it fuses with different fusion rules and the experimental results prove that the method of this paper is better than the traditional methods and it can obtain better fusion effects

    Region-Based Image-Fusion Framework for Compressive Imaging

    Get PDF
    A novel region-based image-fusion framework for compressive imaging (CI) and its implementation scheme are proposed. Unlike previous works on conventional image fusion, we consider both compression capability on sensor side and intelligent understanding of the image contents in the image fusion. Firstly, the compressed sensing theory and normalized cut theory are introduced. Then region-based image-fusion framework for compressive imaging is proposed and its corresponding fusion scheme is constructed. Experiment results demonstrate that the proposed scheme delivers superior performance over traditional compressive image-fusion schemes in terms of both object metrics and visual quality

    Remote sensing image fusion via compressive sensing

    Get PDF
    In this paper, we propose a compressive sensing-based method to pan-sharpen the low-resolution multispectral (LRM) data, with the help of high-resolution panchromatic (HRP) data. In order to successfully implement the compressive sensing theory in pan-sharpening, two requirements should be satisfied: (i) forming a comprehensive dictionary in which the estimated coefficient vectors are sparse; and (ii) there is no correlation between the constructed dictionary and the measurement matrix. To fulfill these, we propose two novel strategies. The first is to construct a dictionary that is trained with patches across different image scales. Patches at different scales or equivalently multiscale patches provide texture atoms without requiring any external database or any prior atoms. The redundancy of the dictionary is removed through K-singular value decomposition (K-SVD). Second, we design an iterative l1-l2 minimization algorithm based on alternating direction method of multipliers (ADMM) to seek the sparse coefficient vectors. The proposed algorithm stacks missing high-resolution multispectral (HRM) data with the captured LRM data, so that the latter is used as a constraint for the estimation of the former during the process of seeking the representation coefficients. Three datasets are used to test the performance of the proposed method. A comparative study between the proposed method and several state-of-the-art ones shows its effectiveness in dealing with complex structures of remote sensing imagery

    Single image super resolution using compressive K-SVD and fusion of sparse approximation algorithms

    Get PDF
    Super Resolution based on Compressed Sensing (CS) considers low resolution (LR) image patch as the compressive measurement of its corresponding high resolution (HR) patch. In this paper we propose a single image super resolution scheme with compressive K-SVD algorithm(CKSVD) for dictionary learning incorporating fusion of sparse approximation algorithms to produce better results. The CKSVD algorithm is able to learn a dictionary on a set of training signals using only compressive sensing measurements of them. In the fusion based scheme used for sparse approximation, several CS reconstruction algorithms participate and they are executed in parallel, independently. The final estimate of the underlying sparse signal is derived by fusing the estimates obtained from the participating algorithms. The experimental results show that the proposed scheme demands fewer CS measurements for creating better quality super resolved images in terms of both PSNR and visual perception

    Compressively Sensed Image Recognition

    Full text link
    Compressive Sensing (CS) theory asserts that sparse signal reconstruction is possible from a small number of linear measurements. Although CS enables low-cost linear sampling, it requires non-linear and costly reconstruction. Recent literature works show that compressive image classification is possible in CS domain without reconstruction of the signal. In this work, we introduce a DCT base method that extracts binary discriminative features directly from CS measurements. These CS measurements can be obtained by using (i) a random or a pseudo-random measurement matrix, or (ii) a measurement matrix whose elements are learned from the training data to optimize the given classification task. We further introduce feature fusion by concatenating Bag of Words (BoW) representation of our binary features with one of the two state-of-the-art CNN-based feature vectors. We show that our fused feature outperforms the state-of-the-art in both cases.Comment: 6 pages, submitted/accepted, EUVIP 201

    Compressive Sensing for PAN-Sharpening

    Get PDF
    Based on compressive sensing framework and sparse reconstruction technology, a new pan-sharpening method, named Sparse Fusion of Images (SparseFI, pronounced as sparsify), is proposed in [1]. In this paper, the proposed SparseFI algorithm is validated using UltraCam and WorldView-2 data. Visual and statistic analysis show superior performance of SparseFI compared to the existing conventional pan-sharpening methods in general, i.e. rich in spatial information and less spectral distortion. Moreover, popular quality assessment metrics are employed to explore the dependency on regularization parameters and evaluate the efficiency of various sparse reconstruction toolboxes

    SurfelWarp: Efficient Non-Volumetric Single View Dynamic Reconstruction

    Full text link
    We contribute a dense SLAM system that takes a live stream of depth images as input and reconstructs non-rigid deforming scenes in real time, without templates or prior models. In contrast to existing approaches, we do not maintain any volumetric data structures, such as truncated signed distance function (TSDF) fields or deformation fields, which are performance and memory intensive. Our system works with a flat point (surfel) based representation of geometry, which can be directly acquired from commodity depth sensors. Standard graphics pipelines and general purpose GPU (GPGPU) computing are leveraged for all central operations: i.e., nearest neighbor maintenance, non-rigid deformation field estimation and fusion of depth measurements. Our pipeline inherently avoids expensive volumetric operations such as marching cubes, volumetric fusion and dense deformation field update, leading to significantly improved performance. Furthermore, the explicit and flexible surfel based geometry representation enables efficient tackling of topology changes and tracking failures, which makes our reconstructions consistent with updated depth observations. Our system allows robots to maintain a scene description with non-rigidly deformed objects that potentially enables interactions with dynamic working environments.Comment: RSS 2018. The video and source code are available on https://sites.google.com/view/surfelwarp/hom

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods
    • 

    corecore