72 research outputs found

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    Millimeter Wave Communications

    Get PDF
    Millimeter wave (mmWave) technologies promise to revolutionize wireless networks by enabling multi-gigabit data rates. However, they suffer from high attenuation, and hence have to use highly directional antennas to focus their power on the receiver. Existing radios have to scan the space to find the best alignment between the transmitter’s and receiver’s beams, a process that takes up to a few seconds. This delay is problematic in a network setting where the base station needs to quickly switch between users and accommodate mobile clients. We present Agile-Link, the first mmWave beam steering system that is demonstrated to find the correct beam alignment without scanning the space. Instead of scanning, Agile- Link hashes the beam directions using a few carefully chosen hash functions. It then identifies the correct alignment by tracking how the energy changes across different hash functions. Our results show that Agile-Link reduces beam steering delay by orders of magnitude.National Science Foundation (U.S.
    • …
    corecore