275 research outputs found

    Neural Relightable Participating Media Rendering

    Get PDF
    Learning neural radiance fields of a scene has recently allowed realistic novel view synthesis of the scene, but they are limited to synthesize images under the original fixed lighting condition. Therefore, they are not flexible for the eagerly desired tasks like relighting, scene editing and scene composition. To tackle this problem, several recent methods propose to disentangle reflectance and illumination from the radiance field. These methods can cope with solid objects with opaque surfaces but participating media are neglected. Also, they take into account only direct illumination or at most one-bounce indirect illumination, thus suffer from energy loss due to ignoring the high-order indirect illumination. We propose to learn neural representations for participating media with a complete simulation of global illumination. We estimate direct illumination via ray tracing and compute indirect illumination with spherical harmonics. Our approach avoids computing the lengthy indirect bounces and does not suffer from energy loss. Our experiments on multiple scenes show that our approach achieves superior visual quality and numerical performance compared to state-of-the-art methods, and it can generalize to deal with solid objects with opaque surfaces as well.Comment: Accepted to NeurIPS 202

    Improving SLI Performance in Optically Challenging Environments

    Get PDF
    The construction of 3D models of real-world scenes using non-contact methods is an important problem in computer vision. Some of the more successful methods belong to a class of techniques called structured light illumination (SLI). While SLI methods are generally very successful, there are cases where their performance is poor. Examples include scenes with a high dynamic range in albedo or scenes with strong interreflections. These scenes are referred to as optically challenging environments. The work in this dissertation is aimed at improving SLI performance in optically challenging environments. A new method of high dynamic range imaging (HDRI) based on pixel-by-pixel Kalman filtering is developed. Using objective metrics, it is show to achieve as much as a 9.4 dB improvement in signal-to-noise ratio and as much as a 29% improvement in radiometric accuracy over a classic method. Quality checks are developed to detect and quantify multipath interference and other quality defects using phase measuring profilometry (PMP). Techniques are established to improve SLI performance in the presence of strong interreflections. Approaches in compressed sensing are applied to SLI, and interreflections in a scene are modeled using SLI. Several different applications of this research are also discussed

    Real-Time Adaptive Video Compression

    Get PDF
    Compressive sensing has been widely applied to problems in signal and imaging processing. In this work, we present an algorithm for predicting optimal real-time compression rates for video. The video data we consider is spatially compressed during the acquisition process, unlike in many of the standard methods. Rather than temporally compressing the frames at a fixed rate, our algorithm adaptively predicts the compression rate given the behavior of a few previous compressed frames. The algorithm uses polynomial fitting and simple filters, making it computationally feasible and easy to implement in hardware. Based on numerical simulations of real videos, the algorithm is able to capture object motion and approximate dynamics within the compressed frames. The adaptive video compression improves the quality of the reconstructed video (as compared to an equivalent fixed rate compression scheme) by several dB of peak signal-to-noise ratio without increasing the amount of information stored, as seen in numerical simulations presented here

    Space-Time Regularization for Video Decompression

    Get PDF
    We consider the problem of reconstructing frames from a video which has been compressed using the video compressive sensing (VCS) method. In VCS data, each frame comes from first subsampling the original video data in space and then averaging the subsampled sequence in time. This results in a large linear system of equations whose inversion is ill-posed. We introduce a convex regularizer to invert the system, where the spatial component is regularized by the total variation seminorm, and the temporal component is regularized by enforcing sparsity on the difference between the spatial gradients of each frame. Since the regularizers are L1L^1-like norms, the model can be written in the form of an easy-to-solve saddle point problem. The saddle point problem is solved by the primal-dual algorithm, whose implementation calls for nearly pointwise operations (i.e., no direct linear inversion) and has a simple parallel version. Results show that our model decompresses videos more accurately than other popular models, with PSNR gains of several dB

    VISUAL TRACKING AND ILLUMINATION RECOVERY VIA SPARSE REPRESENTATION

    Get PDF
    Compressive sensing, or sparse representation, has played a fundamental role in many fields of science. It shows that the signals and images can be reconstructed from far fewer measurements than what is usually considered to be necessary. Sparsity leads to efficient estimation, efficient compression, dimensionality reduction, and efficient modeling. Recently, there has been a growing interest in compressive sensing in computer vision and it has been successfully applied to face recognition, background subtraction, object tracking and other problems. Sparsity can be achieved by solving the compressive sensing problem using L1 minimization. In this dissertation, we present the results of a study of applying sparse representation to illumination recovery, object tracking, and simultaneous tracking and recognition. Illumination recovery, also known as inverse lighting, is the problem of recovering an illumination distribution in a scene from the appearance of objects located in the scene. It is used for Augmented Reality, where the virtual objects match the existing image and cast convincing shadows on the real scene rendered with the recovered illumination. Shadows in a scene are caused by the occlusion of incoming light, and thus contain information about the lighting of the scene. Although shadows have been used in determining the 3D shape of the object that casts shadows onto the scene, few studies have focused on the illumination information provided by the shadows. In this dissertation, we recover the illumination of a scene from a single image with cast shadows given the geometry of the scene. The images with cast shadows can be quite complex and therefore cannot be well approximated by low-dimensional linear subspaces. However, in this study we show that the set of images produced by a Lambertian scene with cast shadows can be efficiently represented by a sparse set of images generated by directional light sources. We first model an image with cast shadows as composed of a diffusive part (without cast shadows) and a residual part that captures cast shadows. Then, we express the problem in an L1-regularized least squares formulation, with nonnegativity constraints (as light has to be nonnegative at any point in space). This sparse representation enjoys an effective and fast solution, thanks to recent advances in compressive sensing. In experiments on both synthetic and real data, our approach performs favorably in comparison to several previously proposed methods. Visual tracking, which consistently infers the motion of a desired target in a video sequence, has been an active and fruitful research topic in computer vision for decades. It has many practical applications such as surveillance, human computer interaction, medical imaging and so on. Many challenges to design a robust tracking algorithm come from the enormous unpredictable variations in the target, such as deformations, fast motion, occlusions, background clutter, and lighting changes. To tackle the challenges posed by tracking, we propose a robust visual tracking method by casting tracking as a sparse approximation problem in a particle filter framework. In this framework, occlusion, noise and other challenging issues are addressed seamlessly through a set of trivial templates. Specifically, to find the tracking target at a new frame, each target candidate is sparsely represented in the space spanned by target templates and trivial templates. The sparsity is achieved by solving an L1-regularized least squares problem. Then the candidate with the smallest projection error is taken as the tracking target. After that, tracking is continued using a Bayesian state inference framework in which a particle filter is used for propagating sample distributions over time. Three additional components further improve the robustness of our approach: 1) a velocity incorporated motion model that helps concentrate the samples on the true target location in the next frame, 2) the nonnegativity constraints that help filter out clutter that is similar to tracked targets in reversed intensity patterns, and 3) a dynamic template update scheme that keeps track of the most representative templates throughout the tracking procedure. We test the proposed approach on many challenging sequences involving heavy occlusions, drastic illumination changes, large scale changes, non-rigid object movement, out-of-plane rotation, and large pose variations. The proposed approach shows excellent performance in comparison with four previously proposed trackers. We also extend the work to simultaneous tracking and recognition in vehicle classification in IR video sequences. We attempt to resolve the uncertainties in tracking and recognition at the same time by introducing a static template set that stores target images in various conditions such as different poses, lighting, and so on. The recognition results at each frame are propagated to produce the final result for the whole video. The tracking result is evaluated at each frame and low confidence in tracking performance initiates a new cycle of tracking and classification. We demonstrate the robustness of the proposed method on vehicle tracking and classification using outdoor IR video sequences

    Field deployable dynamic lighting system for turbid water imaging

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011The ocean depths provide an ever changing and complex imaging environment. As scientists and researches strive to document and study more remote and optically challenging areas, specifically scatter-limited environments. There is a requirement for new illumination systems that improve both image quality and increase imaging distance. One of the most constraining optical properties to underwater image quality are scattering caused by ocean chemistry and entrained organic material. By reducing the size of the scatter interaction volume, one can immediately improve both the focus (forward scatter limited) and contrast (backscatter limited) of underwater images. This thesis describes a relatively simple, cost-effective and field-deployable low-power dynamic lighting system that minimizes the scatter interaction volume with both subjective and quantifiable improvements in imaging performance

    Nonionic UCST-Type Hydrogel Materials

    Get PDF
    corecore