11,124 research outputs found

    Compressive Sensing with Local Geometric Features

    Get PDF
    We propose a framework for compressive sensing of images with local distinguishable objects, such as stars, and apply it to solve a problem in celestial navigation. Specifically, let x be an N-pixel real-valued image, consisting of a small number of local distinguishable objects plus noise. Our goal is to design an m-by-N measurement matrix A with m << N, such that we can recover an approximation to x from the measurements Ax. We construct a matrix A and recovery algorithm with the following properties: (i) if there are k objects, the number of measurements m is O((k log N)/(log k)), undercutting the best known bound of O(k log(N/k)) (ii) the matrix A is very sparse, which is important for hardware implementations of compressive sensing algorithms, and (iii) the recovery algorithm is empirically fast and runs in time polynomial in k and log(N). We also present a comprehensive study of the application of our algorithm to attitude determination, or finding one's orientation in space. Spacecraft typically use cameras to acquire an image of the sky, and then identify stars in the image to compute their orientation. Taking pictures is very expensive for small spacecraft, since camera sensors use a lot of power. Our algorithm optically compresses the image before it reaches the camera's array of pixels, reducing the number of sensors that are required

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Masking Strategies for Image Manifolds

    Full text link
    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the data-dependent masking process, even for modest mask sizes

    How to find real-world applications for compressive sensing

    Full text link
    The potential of compressive sensing (CS) has spurred great interest in the research community and is a fast growing area of research. However, research translating CS theory into practical hardware and demonstrating clear and significant benefits with this hardware over current, conventional imaging techniques has been limited. This article helps researchers to find those niche applications where the CS approach provides substantial gain over conventional approaches by articulating lessons learned in finding one such application; sea skimming missile detection. As a proof of concept, it is demonstrated that a simplified CS missile detection architecture and algorithm provides comparable results to the conventional imaging approach but using a smaller FPA. The primary message is that all of the excitement surrounding CS is necessary and appropriate for encouraging our creativity but we all must also take off our "rose colored glasses" and critically judge our ideas, methods and results relative to conventional imaging approaches.Comment: 10 page

    Building profile reconstruction using TerraSAR-X data time-series and tomographic techniques

    Get PDF
    This work aims to show the potentialities of SAR Tomography (TomoSAR) techniques for the 3-D characterization (height, reflectivity, time stability) of built-up areas using data acquired by the satellite sensor TerraSAR-X. For this purpose 19 TerraSAR-X single-polarimetric multibaseline images acquired over Paris urban area have been processed applying classical nonparametric (Beamforming and Capon) and parametric (MUSIC) spectral estimation techniques
    • …
    corecore