6,418 research outputs found

    Compressive Sensing of time series for human action recognition

    Full text link
    Compressive Sensing (CS) is an emerging signal processing technique where a sparse signal is reconstructed from a small set of random projections. In the recent literature, CS techniques have demonstrated promising results for signal compression and reconstruction [9, 8, 1]. However, their potential as dimensionality reduction techniques for time series has not been significantly explored to date. To this aim, this work investigates the suitability of compressive-sensed time series in an application of human action recognition. In the paper, results from several experiments are presented: (1) in a first set of experiments, the time series are transformed into the CS domain and fed into a hidden Markov model (HMM) for action recognition; (2) in a second set of experiments, the time series are explicitly reconstructed after CS compression and then used for recognition; (3) in the third set of experiments, the time series are compressed by a hybrid CS-Haar basis prior to input into HMM; (4) in the fourth set, the time series are reconstructed from the hybrid CS-Haar basis and used for recognition. We further compare these approaches with alternative techniques such as sub-sampling and filtering. Results from our experiments show unequivocally that the application of CS does not degrade the recognition accuracy; rather, it often increases it. This proves that CS can provide a desirable form of dimensionality reduction in pattern recognition over time series. © 2010 Crown Copyright

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Sparse Representation for Paddy Plants Nutrient Deficiency Tracking System

    Get PDF
    Moving object detection and tracking from consecutive frames of sensing devices (Unmanned Aerial Vehicles-UAV) needs efficient sampling from mass data with sufficient memory saving. Objects with super pixels are tracked by Compressive Sensing (CS) and the generative structural part model is designed to be adaptive to variation of deformable objects. CS can precisely reconstruct sparse signal with a small amount of sampling data. This system creates the sparse representation (SR) dictionary representing the nutrient deficiency tracking system for paddy plants to support the healthily growth of the whole field. This system uses compressed domain features that can be exploited to map the semantic features of consecutive frames. As the CS is a developing signal processing technique, a sparse signal is reconstructed with efficient sampling rate and creates the sparse dictionary. The SR for paddy plant health system can build rich information about paddy plants from signaling devices and can alert the deficiency conditions accurately in real time

    Multi-task Image Classification via Collaborative, Hierarchical Spike-and-Slab Priors

    Full text link
    Promising results have been achieved in image classification problems by exploiting the discriminative power of sparse representations for classification (SRC). Recently, it has been shown that the use of \emph{class-specific} spike-and-slab priors in conjunction with the class-specific dictionaries from SRC is particularly effective in low training scenarios. As a logical extension, we build on this framework for multitask scenarios, wherein multiple representations of the same physical phenomena are available. We experimentally demonstrate the benefits of mining joint information from different camera views for multi-view face recognition.Comment: Accepted to International Conference in Image Processing (ICIP) 201

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin
    • …
    corecore