226 research outputs found

    Performance Analysis of Compressive Sensing based LS and MMSE Channel Estimation Algorithm

    Get PDF
    In this paper, we have developed and implemented Minimum Mean Square Channel Estimation with Compressive Sensing (MMSE-CS) algorithm in MIMO-OFDM systems. The performance of this algorithm is analyzed by comparing it with Least Square channel estimation with compressive sensing (LS-CS), Least Square (LS) and Minimum Mean Square Estimation (MMSE) algorithms. It is observed that the performance of MMSE-CS in terms of Bit Error Rate (BER) metric is definitely better than LS-CS and LS algorithms and it is at par with MMSE algorithm. Moreover the role of compressive sensing theory in channel estimation is accentuated by the fact that in MMSE-CS algorithm only a very small number of channel coefficients are sensed to recreate the transmitted data faithfully as compared to MMSE algorithm

    Near-optimal pilot allocation in sparse channel estimation for massive MIMO OFDM systems

    Get PDF
    Inspired by the success in sparse signal recovery, compressive sensing has already been applied for the pilot-based channel estimation in massive multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. However, little attention has been paid to the pilot design in the massive MIMO system. To obtain the near-optimal pilot placement, two efficient schemes based on the block coherence (BC) of the measurement matrix are introduced. The first scheme searches the pilot pattern with the minimum BC value through the simultaneous perturbation stochastic approximation (SPSA) method. The second scheme combines the BC with probability model and then utilizes the cross-entropy optimization (CEO) method to solve the pilot allocation problem. Simulation results show that both of the methods outperform the equispaced search method, exhausted search method and random search method in terms of mean square error (MSE) of the channel estimate. Moreover, it is demonstrated that SPSA converges much faster than the other methods thus are more efficient, while CEO could provide more accurate channel estimation performance

    Compressive channel estimation

    Get PDF
    In dieser Arbeit untersuchen wir die kompressive Kanalschätzung (KKS), also die Anwendung der Theorie und Methodologie des Compressed Sensing (CS) auf das Problem der Kanalschätzung doppelt selektiver Kanäle in Multicarrier-Systemen. Nach einer kurzen Einführung in die kabellose Kommunikation und einem kleinen Überblick über CS und einigen seiner Varianten betrachten wir die in [1] präsentierte elementare kompressive Kanalschätzmethode. Wir analysieren ihre Leistungsfähigkeit sowie ihre Komplexität, und wir untersuchen die ihr zugrundeliegende Annahme, nämlich die "delay-Doppler sparsity" typischer Kanäle, genauer. Aufbauend auf dieser Analyse stellen wir einige Varianten und Erweiterungen der kompressiven Kanalschätzmethode vor. Zuerst nutzen wir die Tatsache dass typische Kanäle auch als "group sparse" angesehen werden können. Dies ist eine Folge des sogenannten Leck Effekts, welcher die Leistung einer jeden kompressiven Kanalschätzmethode beeinträchtigt und daher eine enorme Herausforderungen für die KKS darstellt. Weiters betrachten wir die Erweiterung der kompressiven Schätzmethode auf Mehrantennensysteme (MIMO). Wir zeigen, dass die einzelnen Querkanäle eines solchen MIMO Systems (in etwa) als "jointly sparse", sogar als "jointly group sparse" angesehen, und daher Methoden des Multichannel CS (MCS) verwendet werden können. Letztens nutzen wir - unter Verwendung der Konzepte des Modified CS (MOD-CS) - die approximative "sequential sparsity" des Kanals zum Kanal-Tracking über mehrere aufeinanderfolgende Symbolblöcke hinweg. Diese Vorgehensweise kann die Leistung zusätzlich steigern, viel wichtiger jedoch, sie kann die Komplexität der Methode reduzieren. Darüber hinaus adaptieren wir die Technik der Basis-Optimierung, welche in [2, 3] vorgestellt wurde, für die verschiedenen Szenarien, und wir präsentieren Simulationsergebnisse, welche die verbesserte Leistung all jener Kanalschätzmethoden demonstrieren, die in dieser Arbeit erklärt werden.In this thesis we investigate compressive channel estimation (CCE), i.e. the application of the theory and methodology of Compressed Sensing (CS) to the problem of estimating doubly selective channels in multicarrier systems. After a brief introduction to wireless communications and a short survey of CS and some of its variations, we review the basic compressive channel estimator that was introduced in [1]. We analyze its performance as well as its computational complexity, and we explore the basic assumption underlying the compressive estimator, namely the delay-Doppler sparsity of typical channels, in more detail. Based on this analysis, we propose several variations and extensions of the conventional compressive channel estimator. First, we make use of the fact that typical channels can be considered group sparse as well. This is due to the so-called leakage effect, which actually impairs the performance of any channel estimator utilizing CS techniques and therefore is one of the main challenges in CCE. Then, we investigate the extension of the compressive estimators to the multi-antenna (MIMO) case. We show that the various cross-channels of a MIMO system can (approximately) be considered jointly sparse, even jointly group sparse, and that therefore the methodology of multichannel CS can be utilized. Last, by using the recently introduced concept of modified CS, we exploit the approximate sequential sparsity of the channel in order to track it over a period of several consecutive symbol blocks. This approach can yield an additional performance gain, but more importantly it can substantially reduce the computational complexity of the method. Additionally, we adapt the basis optimization techniques introduced in [2, 3] to the various settings, and we present simulation results that demonstrate the performance gains that can be achieved by using each of the compressive estimators presented in this thesis
    corecore