188 research outputs found

    System-on-Chip Solution for Patients Biometric: A Compressive Sensing-Based Approach

    Get PDF
    IEEE The ever-increasing demand for biometric solutions for the internet of thing (IoT)-based connected health applications is mainly driven by the need to tackle fraud issues, along with the imperative to improve patient privacy, safety and personalized medical assistance. However, the advantages offered by the IoT platforms come with the burden of big data and its associated challenges in terms of computing complexity, bandwidth availability and power consumption. This paper proposes a solution to tackle both privacy issues and big data transmission by incorporating the theory of compressive sensing (CS) and a simple, yet, efficient identification mechanism using the electrocardiogram (ECG) signal as a biometric trait. Moreover, the paper presents the hardware implementation of the proposed solution on a system on chip (SoC) platform with an optimized architecture to further reduce hardware resource usage. First, we investigate the feasibility of compressing the ECG data while maintaining a high identification quality. The obtained results show a 98.88% identification rate using only a compression ratio of 30%. Furthermore, the proposed system has been implemented on a Zynq SoC using heterogeneous software/hardware solution, which is able to accelerate the software implementation by a factor of 7.73 with a power consumption of 2.318 W

    ???????????? ????????? ?????? ?????? ?????? ?????? ?????? ??????

    Get PDF
    Department of Electrical EngineeringBiometrics such as fingerprint, iris, face, and electrocardiogram (ECG) have been investigated as convenient and powerful security tools that can potentially replace or supplement current possession or knowledge based authentication schemes. Recently, multi-spectral skin photomatrix (MSP) has been newly found as one of the biometrics. Moreover, since the interest of usage and security for wearable devices have been increasing, multi-modal biometrics authentication which is combining more than two modalities such as (iris + face) or (iris + fingerprint) for powerful and convenience authentication is widely proposed. However, one practical drawback of biometrics is irrevocability. Unlike password, biometrics can not be canceled and re-used once compromised since they are not changed forever. There have been several works on cancelable biometrics to overcome this drawback. ECG has been investigated as a promising biometrics, but there are few research on cancelable ECG biometrics. As we aim to study a way for multi-modal biometric scheme for wearable devices that is assumed circumstance under some limitations such as relatively high performance, low computing power, and limited information (not sharing users information to the public), in this study, we proposed a multi-modal biometrics authentication by combining ECG and MSP. For investigating the performances versus level of fusions, Adaboost algorithm was studied as a score level fusion method, and Majority Voting was studied as a decision level fusion method. Due to ECG signal is 1 dimensional, it provides benefits in wearable devices for overcoming the computing memory limitation. The reasons that we select MSP combination with ECG are it can be collected by measuring on inner-wrist of human body and it also can be considered as hardly stolen modality in remote ways. For proposed multi-modal biometrics, We evaluate our methods using collected data by Brain-Computer-Interface lab with 63 subjects. Our Adaboost based pro- posed multi modal biometrics method with performance boost yielded 99.7% detection probability at 0.1% false alarm ratio (PD0.1) and 0.3% equal error rate (EER), which are far better than simply combining by Majority Voting algorithm with 21.5% PD0.1 and 1.6% EER. Note that for training the Adaboost algorithm, we used only 9 people dataset which is assumed as public data and not included for testing data set, against for knowledge limitation as the other constraint. As initial step for user template protection, We proposed a cancelable ECG based user authentication using a composite hypothesis testing in compressive sensing do- main by deriving a generalized likelihood ratio test (GLRT) detector. We also pro- posed two performance boost tricks in compressive sensing domain to compensate for performance degradation due to cancelable schemes: user template guided filtering and T-wave shift model based GLRT detector for random projection domain. To verify our proposed method, we investigated cancelable biometrics criteria for the proposed methods to confirm that the proposed algorithms are indeed cancelable. For proposed cancelable ECG authentication, We evaluated our proposed methods using ECG data with 147 subjects from three public ECG data sets (ECG-ID, MIT- BIH Normal / Arrhythmia). Our proposed cancelable ECG authentication method is practically cancelable by satisfying all cancelable biometrics criteria. Moreover, our proposed method with performance boost tricks achieved 97.1% detection probability at 1% false alarm ratio (PD1) and 1.9% equal error rate (EER), which are even better than non-cancelable baseline with 94.4% PD1 and 3.1% EER for single pulse ECG authentication.ope

    Cancelable ECG Biometrics using Compressive Sensing-Generalized Likelihood Ratio Test

    Get PDF
    Electrocardiogram (ECG) has been investigated as promising biometrics, but it cannot be canceled and re-used once compromised just like other biometrics. We propose methods to overcome the issue of irrevocability in ECG biometrics without compromising performance. Our proposed cancelable user authentication uses a generalized likelihood ratio test (GLRT) based on a composite hypothesis testing in compressive sensing (CS) domain We also propose a permutation-based revocation method for CS-based cancelable biometrics so that it becomes resilient to record multiplicity attack. In addition, to compensate for inevitable performance degradation due to cancelable schemes, we also propose two performance improvement methods without undermining cancelable schemes: a self-guided ECG filtering and a T-wave shift model in our CS-GLRT. Finally, our proposed methods were evaluated for various cancelable biometrics criteria with the public ECG-ID data (89 subjects). Our cancelable ECG biometric methods yielded up to 93.0% detection probability at 2.0% false alarm ratio (PD*) and 3.8% equal error rate (EER), which are comparable to or even better than non-cancelable baseline with 93.2% PD* and 4.8% EER for challenging single pulse ECG authentication, respectively. Our proposed methods met all cancelable biometrics criteria theoretically or empirically. Our cancelable secure user template with our novel revocation process is practically non-invertible and robust to record multiplicity attack

    ECG Signal Reconstruction on the IoT-Gateway and Efficacy of Compressive Sensing Under Real-time Constraints

    Get PDF
    Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based solutions have many implementation challenges, including energy consumption at the sensing node, and delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to extend the battery lifetime of medical wearable devices. However, it is usually associated with computational complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs) offer a local processing solution that can alleviate the limitations of remote signal processing. This paper demonstrates the real-time performance of compressed ECG reconstruction on ARM's big.LITTLE HMP and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates system's latency and improves gateway's battery life. Many remote health solutions can benefit from an architecture centered around the use of HMPs, a step toward better remote health monitoring systems.Peer reviewedFinal Published versio

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    Boosting the Battery Life of Wearables for Health Monitoring Through the Compression of Biosignals

    Get PDF
    Modern wearable Internet of Things (IoT) devices enable the monitoring of vital parameters such as heart or respiratory (RESP) rates, electrocardiography (ECG), photo-plethysmographic (PPG) signals within e-health applications. A common issue of wearable technology is that signal transmission is power-demanding and, as such, devices require frequent battery charges and this poses serious limitations to the continuous monitoring of vitals. To ameliorate this, we advocate the use of lossy signal compression as a means to decrease the data size of the gathered biosignals and, in turn, boost the battery life of wearables and allow for fine-grained and long-term monitoring. Considering 1-D biosignals such as ECG, RESP, and PPG, which are often available from commercial wearable IoT devices, we provide a thorough review of existing biosignal compression algorithms. Besides, we present novel approaches based on online dictionaries, elucidating their operating principles and providing a quantitative assessment of compression, reconstruction and energy consumption performance of all schemes. As we quantify, the most efficient schemes allow reductions in the signal size of up to 100 times, which entail similar reductions in the energy demand, by still keeping the reconstruction error within 4% of the peak-to-peak signal amplitude. Finally, avenues for future research are discussed. © 2014 IEEE

    Real-time ECG Monitoring using Compressive sensing on a Heterogeneous Multicore Edge-Device

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In a typical ambulatory health monitoring systems, wearable medical sensors are deployed on the human body to continuously collect and transmit physiological signals to a nearby gateway that forward the measured data to the cloud-based healthcare platform. However, this model often fails to respect the strict requirements of healthcare systems. Wearable medical sensors are very limited in terms of battery lifetime, in addition, the system reliance on a cloud makes it vulnerable to connectivity and latency issues. Compressive sensing (CS) theory has been widely deployed in electrocardiogramme ECG monitoring application to optimize the wearable sensors power consumption. The proposed solution in this paper aims to tackle these limitations by empowering a gatewaycentric connected health solution, where the most power consuming tasks are performed locally on a multicore processor. This paper explores the efficiency of real-time CS-based recovery of ECG signals on an IoT-gateway embedded with ARM’s big.littleTM multicore for different signal dimension and allocated computational resources. Experimental results show that the gateway is able to reconstruct ECG signals in real-time. Moreover, it demonstrates that using a high number of cores speeds up the execution time and it further optimizes energy consumption. The paper identifies the best configurations of resource allocation that provides the optimal performance. The paper concludes that multicore processors have the computational capacity and energy efficiency to promote gateway-centric solution rather than cloud-centric platforms

    Algorithms design for improving homecare using Electrocardiogram (ECG) signals and Internet of Things (IoT)

    Get PDF
    Due to the fast growing of population, a lot of hospitals get crowded from the huge amount of patients visits. Moreover, during COVID-19 a lot of patients prefer staying at home to minimize the spread of the virus. The need for providing care to patients at home is essential. Internet of Things (IoT) is widely known and used by different fields. IoT based homecare will help in reducing the burden upon hospitals. IoT with homecare bring up several benefits such as minimizing human exertions, economical savings and improved efficiency and effectiveness. One of the important requirement on homecare system is the accuracy because those systems are dealing with human health which is sensitive and need high amount of accuracy. Moreover, those systems deal with huge amount of data due to the continues sensing that need to be processed well to provide fast response regarding the diagnosis with minimum cost requirements. Heart is one of the most important organ in the human body that requires high level of caring. Monitoring heart status can diagnose disease from the early stage and find the best medication plan by health experts. Continues monitoring and diagnosis of heart could exhaust caregivers efforts. Having an IoT heart monitoring model at home is the solution to this problem. Electrocardiogram (ECG) signals are used to track heart condition using waves and peaks. Accurate and efficient IoT ECG monitoring at home can detect heart diseases and save human lives. As a consequence, an IoT ECG homecare monitoring model is designed in this thesis for detecting Cardiac Arrhythmia and diagnosing heart diseases. Two databases of ECG signals are used; one online which is old and limited, and another huge, unique and special from real patients in hospital. The raw ECG signal for each patient is passed through the implemented Low Pass filter and Savitzky Golay filter signal processing techniques to remove the noise and any external interference. The clear signal in this model is passed through feature extraction stage to extract number of features based on some metrics and medical information along with feature extraction algorithm to find peaks and waves. Those features are saved in the local database to apply classification on them. For the diagnosis purpose a classification stage is made using three classification ways; threshold values, machine learning and deep learning to increase the accuracy. Threshold values classification technique worked based on medical values and boarder lines. In case any feature goes above or beyond these ranges, a warning message appeared with expected heart disease. The second type of classification is by using machine learning to minimize the human efforts. A Support Vector Machine (SVM) algorithm is proposed by running the algorithm on the features extracted from both databases. The classification accuracy for online and hospital databases was 91.67% and 94% respectively. Due to the non-linearity of the decision boundary, a third way of classification using deep learning is presented. A full Multilayer Perceptron (MLP) Neural Network is implemented to improve the accuracy and reduce the errors. The number of errors reduced to 0.019 and 0.006 using online and hospital databases. While using hospital database which is huge, there is a need for a technique to reduce the amount of data. Furthermore, a novel adaptive amplitude threshold compression algorithm is proposed. This algorithm is able to make diagnosis of heart disease from the reduced size using compressed ECG signals with high level of accuracy and low cost. The extracted features from compressed and original are similar with only slight differences of 1%, 2% and 3% with no effects on machine learning and deep learning classification accuracy without the need for any reconstructions. The throughput is improved by 43% with reduced storage space of 57% when using data compression. Moreover, to achieve fast response, the amount of data should be reduced further to provide fast data transmission. A compressive sensing based cardiac homecare system is presented. It gives the channel between sender and receiver the ability to carry small amount of data. Experiment results reveal that the proposed models are more accurate in the classification of Cardiac Arrhythmia and in the diagnosis of heart diseases. The proposed models ensure fast diagnosis and minimum cost requirements. Based on the experiments on classification accuracy, number of errors and false alarms, the dictionary of the compressive sensing selected to be 900. As a result, this thesis provided three different scenarios that achieved IoT homecare Cardiac monitoring to assist in further research for designing homecare Cardiac monitoring systems. The experiment results reveal that those scenarios produced better results with high level of accuracy in addition to minimizing data and cost requirements
    corecore