1,223 research outputs found

    Measurement Bounds for Sparse Signal Ensembles via Graphical Models

    Full text link
    In compressive sensing, a small collection of linear projections of a sparse signal contains enough information to permit signal recovery. Distributed compressive sensing (DCS) extends this framework by defining ensemble sparsity models, allowing a correlated ensemble of sparse signals to be jointly recovered from a collection of separately acquired compressive measurements. In this paper, we introduce a framework for modeling sparse signal ensembles that quantifies the intra- and inter-signal dependencies within and among the signals. This framework is based on a novel bipartite graph representation that links the sparse signal coefficients with the measurements obtained for each signal. Using our framework, we provide fundamental bounds on the number of noiseless measurements that each sensor must collect to ensure that the signals are jointly recoverable.Comment: 11 pages, 2 figure

    Joint recovery algorithms using difference of innovations for distributed compressed sensing

    Get PDF
    Distributed compressed sensing is concerned with representing an ensemble of jointly sparse signals using as few linear measurements as possible. Two novel joint reconstruction algorithms for distributed compressed sensing are presented in this paper. These algorithms are based on the idea of using one of the signals as side information; this allows to exploit joint sparsity in a more effective way with respect to existing schemes. They provide gains in reconstruction quality, especially when the nodes acquire few measurements, so that the system is able to operate with fewer measurements than is required by other existing schemes. We show that the algorithms achieve better performance with respect to the state-of-the-art.Comment: Conference Record of the Forty Seventh Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 201
    • …
    corecore