177 research outputs found

    An Efficient Wideband Spectrum Sensing Algorithm for Unmanned Aerial Vehicle Communication Networks

    Get PDF
    With increasingly smaller size, more powerful sensing capabilities and higher level of autonomy, multiple unmanned aerial vehicles (UAVs) can form UAV networks to collaboratively complete missions more reliably, efficiently and economically. While UAV networks are promising for many applications, there are many outstanding issues to be resolved before large scale UAV networks are practically used. In this paper we study the application of cognitive radio technology for UAV communication networks, to provide high capacity and reliable communication with opportunistic and timely spectrum access. Compressive sensing is applied in the cognitive radio to boost the performance of spectrum sensing. However, the performance of existing compressive spectrum sensing schemes is constrained with non-strictly sparse spectrum. In addition, the reconstruction process applied in existing schemes has unnecessarily high computational complexity and low energy efficiency. We proposed a new compressive signal processing algorithm, called Iterative Compressive Filtering, to improve the UAV network communication performance. The key idea is using orthogonal projection as a bandstop filter in compressive domain. The components of primary users (PUs) in the recognized subchannels are adaptively eliminated in compressive domain, which can directly update the measurement for further detection of other active users. Experiment results showed increased efficiency of the proposed algorithm over existing compressive spectrum sensing algorithms. The proposed algorithm achieved higher detection probability in identifying the occupied subchannels under the condition of non-strictly sparse spectrum with large computational complexity reduction, which can provide strong support of reliable and timely communication for UAV networks

    A Channel Ranking And Selection Scheme Based On Channel Occupancy And SNR For Cognitive Radio Systems

    Get PDF
    Wireless networks and information traffic have grown exponentially over the last decade. Consequently, an increase in demand for radio spectrum frequency bandwidth has resulted. Recent studies have shown that with the current fixed spectrum allocation (FSA), radio frequency band utilization ranges from 15% to 85%. Therefore, there are spectrum holes that are not utilized all the time by the licensed users, and, thus the radio spectrum is inefficiently exploited. To solve the problem of scarcity and inefficient utilization of the spectrum resources, dynamic spectrum access has been proposed as a solution to enable sharing and using available frequency channels. With dynamic spectrum allocation (DSA), unlicensed users can access and use licensed, available channels when primary users are not transmitting. Cognitive Radio technology is one of the next generation technologies that will allow efficient utilization of spectrum resources by enabling DSA. However, dynamic spectrum allocation by a cognitive radio system comes with the challenges of accurately detecting and selecting the best channel based on the channelâs availability and quality of service. Therefore, the spectrum sensing and analysis processes of a cognitive radio system are essential to make accurate decisions. Different spectrum sensing techniques and channel selection schemes have been proposed. However, these techniques only consider the spectrum occupancy rate for selecting the best channel, which can lead to erroneous decisions. Other communication parameters, such as the Signal-to-Noise Ratio (SNR) should also be taken into account. Therefore, the spectrum decision-making process of a cognitive radio system must use techniques that consider spectrum occupancy and channel quality metrics to rank channels and select the best option. This thesis aims to develop a utility function based on spectrum occupancy and SNR measurements to model and rank the sensed channels. An evolutionary algorithm-based SNR estimation technique was developed, which enables adaptively varying key parameters of the existing Eigenvalue-based blind SNR estimation technique. The performance of the improved technique is compared to the existing technique. Results show the evolutionary algorithm-based estimation performing better than the existing technique. The utility-based channel ranking technique was developed by first defining channel utility function that takes into account SNR and spectrum occupancy. Different mathematical functions were investigated to appropriately model the utility of SNR and spectrum occupancy rate. A ranking table is provided with the utility values of the sensed channels and compared with the usual occupancy rate based channel ranking. According to the results, utility-based channel ranking provides a better scope of making an informed decision by considering both channel occupancy rate and SNR. In addition, the efficiency of several noise cancellation techniques was investigated. These techniques can be employed to get rid of the impact of noise on the received or sensed signals during spectrum sensing process of a cognitive radio system. Performance evaluation of these techniques was done using simulations and the results show that the evolutionary algorithm-based noise cancellation techniques, particle swarm optimization and genetic algorithm perform better than the regular gradient descent based technique, which is the least-mean-square algorithm
    • …
    corecore