850 research outputs found

    Compressive Random Access Using A Common Overloaded Control Channel

    Full text link
    We introduce a "one shot" random access procedure where users can send a message without a priori synchronizing with the network. In this procedure a common overloaded control channel is used to jointly detect sparse user activity and sparse channel profiles. The detected information is subsequently used to demodulate the data in dedicated frequency slots. We analyze the system theoretically and provide a link between achievable rates and standard compressing sensing estimates in terms of explicit expressions and scaling laws. Finally, we support our findings with simulations in an LTE-A-like setting allowing "one shot" sparse random access of 100 users in 1ms.Comment: 6 pages, 3 figures, published at Globecom 201

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Reliable recovery of hierarchically sparse signals for Gaussian and Kronecker product measurements

    Full text link
    We propose and analyze a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge inter alia in the context of mobile communication, in order to meet the scalability and low complexity requirements of massive antenna systems and massive machine-type communication. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm referred to as HiHTP. We provide both a proof of convergence and a recovery guarantee for noisy Gaussian measurements that exhibit an improved asymptotic scaling in terms of the sampling complexity in comparison with the usual HTP algorithm. Furthermore, hierarchically sparse signals and Kronecker product structured measurements naturally arise together in a variety of applications. We establish the efficient reconstruction of hierarchically sparse signals from Kronecker product measurements using the HiHTP algorithm. Additionally, we provide analytical results that connect our recovery conditions to generalized coherence measures. Again, our recovery results exhibit substantial improvement in the asymptotic sampling complexity scaling over the standard setting. Finally, we validate in numerical experiments that for hierarchically sparse signals, HiHTP performs significantly better compared to HTP.Comment: 11+4 pages, 5 figures. V3: Incomplete funding information corrected and minor typos corrected. V4: Change of title and additional author Axel Flinth. Included new results on Kronecker product measurements and relations of HiRIP to hierarchical coherence measures. Improved presentation of general hierarchically sparse signals and correction of minor typo

    Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks

    Get PDF
    The fifth generation of cellular communication systems is foreseen to enable a multitude of new applications and use cases with very different requirements. A new 5G multiservice air interface needs to enhance broadband performance as well as provide new levels of reliability, latency and supported number of users. In this paper we focus on the massive Machine Type Communications (mMTC) service within a multi-service air interface. Specifically, we present an overview of different physical and medium access techniques to address the problem of a massive number of access attempts in mMTC and discuss the protocol performance of these solutions in a common evaluation framework

    One-Shot Messaging at Any Load Through Random Sub-Channeling in OFDM

    Full text link
    Compressive Sensing has well boosted massive random access protocols over the last decade. In this paper we apply an orthogonal FFT basis as it is used in OFDM, but subdivide its image into so-called sub-channels and let each sub-channel take only a fraction of the load. In a random fashion the subdivision is consecutively applied over a suitable number of time-slots. Within the time-slots the users will not change their sub-channel assignment and send in parallel the data. Activity detection is carried out jointly across time-slots in each of the sub-channels. For such system design we derive three rather fundamental results: i) First, we prove that the subdivision can be driven to the extent that the activity in each sub-channel is sparse by design. An effect that we call sparsity capture effect. ii) Second, we prove that effectively the system can sustain any overload situation relative to the FFT dimension, i.e. detection failure of active and non-active users can be kept below any desired threshold regardless of the number of users. The only price to pay is delay, i.e. the number of time-slots over which cross-detection is performed. We achieve this by jointly exploring the effect of measure concentration in time and frequency and careful system parameter scaling. iii) Third, we prove that parallel to activity detection active users can carry one symbol per pilot resource and time-slot so it supports so-called one-shot messaging. The key to proving these results are new concentration results for sequences of randomly sub-sampled FFTs detecting the sparse vectors "en bloc". Eventually, we show by simulations that the system is scalable resulting in a coarsely 30-fold capacity increase compared to standard OFDM
    corecore