377 research outputs found

    Moving Target Detection Based on an Adaptive Low-Rank Sparse Decomposition

    Get PDF
    For the exact detection of moving targets in video processing, an adaptive low-rank sparse decomposition algorithm is proposed in this paper. In the paper's algorithm, the background model and the solved frame vector are first used to construct an augmented matrix, then robust principal component analysis (RPCA) is used to perform a low-rank sparse decomposition on the enhanced augmented matrix. The separated low-rank part and sparse noise correspond to the background and motion foreground of the video frame, respectively, the incremental singular value decomposition method and the current background vector are used to update the background model. The experimental results show that the algorithm can deal with complex scenes such as light changes and background motion better, and the algorithm's delay and memory consumption can be reduced effectively

    Objects detection and tracking using fast principle component purist and kalman filter

    Get PDF
    The detection and tracking of moving objects attracted a lot of concern because of the vast computer vision applications. This paper proposes a new algorithm based on several methods for identifying, detecting, and tracking an object in order to develop an effective and efficient system in several applications. This algorithm has three main parts: the first part for background modeling and foreground extraction, the second part for smoothing, filtering and detecting moving objects within the video frame and the last part includes tracking and prediction of detected objects. In this proposed work, a new algorithm to detect moving objects from video data is designed by the Fast Principle Component Purist (FPCP). Then we used an optimal filter that performs well to reduce noise through the median filter. The Fast Region-convolution neural networks (Fast-RCNN) is used to add smoothness to the spatial identification of objects and their areas. Then the detected object is tracked by Kalman Filter. Experimental results show that our algorithm adapts to different situations and outperforms many existing algorithms

    Gaussian mixture model classifiers for detection and tracking in UAV video streams.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Manual visual surveillance systems are subject to a high degree of human-error and operator fatigue. The automation of such systems often employs detectors, trackers and classifiers as fundamental building blocks. Detection, tracking and classification are especially useful and challenging in Unmanned Aerial Vehicle (UAV) based surveillance systems. Previous solutions have addressed challenges via complex classification methods. This dissertation proposes less complex Gaussian Mixture Model (GMM) based classifiers that can simplify the process; where data is represented as a reduced set of model parameters, and classification is performed in the low dimensionality parameter-space. The specification and adoption of GMM based classifiers on the UAV visual tracking feature space formed the principal contribution of the work. This methodology can be generalised to other feature spaces. This dissertation presents two main contributions in the form of submissions to ISI accredited journals. In the first paper, objectives are demonstrated with a vehicle detector incorporating a two stage GMM classifier, applied to a single feature space, namely Histogram of Oriented Gradients (HoG). While the second paper demonstrates objectives with a vehicle tracker using colour histograms (in RGB and HSV), with Gaussian Mixture Model (GMM) classifiers and a Kalman filter. The proposed works are comparable to related works with testing performed on benchmark datasets. In the tracking domain for such platforms, tracking alone is insufficient. Adaptive detection and classification can assist in search space reduction, building of knowledge priors and improved target representations. Results show that the proposed approach improves performance and robustness. Findings also indicate potential further enhancements such as a multi-mode tracker with global and local tracking based on a combination of both papers
    • …
    corecore