1,298 research outputs found

    The application of compressive sampling to radio astronomy I: Deconvolution

    Full text link
    Compressive sampling is a new paradigm for sampling, based on sparseness of signals or signal representations. It is much less restrictive than Nyquist-Shannon sampling theory and thus explains and systematises the widespread experience that methods such as the H\"ogbom CLEAN can violate the Nyquist-Shannon sampling requirements. In this paper, a CS-based deconvolution method for extended sources is introduced. This method can reconstruct both point sources and extended sources (using the isotropic undecimated wavelet transform as a basis function for the reconstruction step). We compare this CS-based deconvolution method with two CLEAN-based deconvolution methods: the H\"ogbom CLEAN and the multiscale CLEAN. This new method shows the best performance in deconvolving extended sources for both uniform and natural weighting of the sampled visibilities. Both visual and numerical results of the comparison are provided.Comment: Published by A&A, Matlab code can be found: http://code.google.com/p/csra/download

    Multi-Scale CLEAN deconvolution of radio synthesis images

    Full text link
    Radio synthesis imaging is dependent upon deconvolution algorithms to counteract the sparse sampling of the Fourier plane. These deconvolution algorithms find an estimate of the true sky brightness from the necessarily incomplete sampled visibility data. The most widely used radio synthesis deconvolution method is the CLEAN algorithm of Hogbom. This algorithm works extremely well for collections of point sources and surprisingly well for extended objects. However, the performance for extended objects can be improved by adopting a multi-scale approach. We describe and demonstrate a conceptually simple and algorithmically straightforward extension to CLEAN that models the sky brightness by the summation of components of emission having different size scales. While previous multiscale algorithms work sequentially on decreasing scale sizes, our algorithm works simultaneously on a range of specified scales. Applications to both real and simulated data sets are given.Comment: Submitted to IEEE Special Issue on Signal Processin

    Joint compressive sampling and deconvolution in ultrasound medical imaging

    Get PDF
    International audienceThe interest of compressive sampling and image deconvolution has been extensively explored in the ultrasound imaging literature. The first seeks to reduce the volume of acquired data and/or to accelerate the frame rate. The second aims at improving the ultrasound image quality in terms of spatial resolution, contrast and signal to noise ratio. In this paper, we propose a novel approach combining these two frameworks, resulting into a compressive deconvolution technique aiming at obtaining high quality reconstructions from a reduced number of measurements. The resulting inverse problem is solved by minimizing an objective function taking into account the data attachment term and two appropriate prior information terms adapted to ultrasound imaging

    Compressively characterizing high-dimensional entangled states with complementary, random filtering

    Get PDF
    The resources needed to conventionally characterize a quantum system are overwhelmingly large for high- dimensional systems. This obstacle may be overcome by abandoning traditional cornerstones of quantum measurement, such as general quantum states, strong projective measurement, and assumption-free characterization. Following this reasoning, we demonstrate an efficient technique for characterizing high-dimensional, spatial entanglement with one set of measurements. We recover sharp distributions with local, random filtering of the same ensemble in momentum followed by position---something the uncertainty principle forbids for projective measurements. Exploiting the expectation that entangled signals are highly correlated, we use fewer than 5,000 measurements to characterize a 65, 536-dimensional state. Finally, we use entropic inequalities to witness entanglement without a density matrix. Our method represents the sea change unfolding in quantum measurement where methods influenced by the information theory and signal-processing communities replace unscalable, brute-force techniques---a progression previously followed by classical sensing.Comment: 13 pages, 7 figure
    • …
    corecore