231 research outputs found

    Adaptive resource optimization for edge inference with goal-oriented communications

    Get PDF
    AbstractGoal-oriented communications represent an emerging paradigm for efficient and reliable learning at the wireless edge, where only the information relevant for the specific learning task is transmitted to perform inference and/or training. The aim of this paper is to introduce a novel system design and algorithmic framework to enable goal-oriented communications. Specifically, inspired by the information bottleneck principle and targeting an image classification task, we dynamically change the size of the data to be transmitted by exploiting banks of convolutional encoders at the device in order to extract meaningful and parsimonious data features in a totally adaptive and goal-oriented fashion. Exploiting knowledge of the system conditions, such as the channel state and the computation load, such features are dynamically transmitted to an edge server that takes the final decision, based on a proper convolutional classifier. Hinging on Lyapunov stochastic optimization, we devise a novel algorithmic framework that dynamically and jointly optimizes communication, computation, and the convolutional encoder classifier, in order to strike a desired trade-off between energy, latency, and accuracy of the edge learning task. Several simulation results illustrate the effectiveness of the proposed strategy for edge learning with goal-oriented communications

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 32)

    Get PDF
    Abstracts are provided for 136 patents and patent applications entered into the NASA scientific and technical information system during the period July through December 1987. Each entry consists of a citation , an abstract, and in most cases, a key illustration selected from the patent or patent application

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    On feedback-based rateless codes for data collection in vehicular networks

    Full text link
    The ability to transfer data reliably and with low delay over an unreliable service is intrinsic to a number of emerging technologies, including digital video broadcasting, over-the-air software updates, public/private cloud storage, and, recently, wireless vehicular networks. In particular, modern vehicles incorporate tens of sensors to provide vital sensor information to electronic control units (ECUs). In the current architecture, vehicle sensors are connected to ECUs via physical wires, which increase the cost, weight and maintenance effort of the car, especially as the number of electronic components keeps increasing. To mitigate the issues with physical wires, wireless sensor networks (WSN) have been contemplated for replacing the current wires with wireless links, making modern cars cheaper, lighter, and more efficient. However, the ability to reliably communicate with the ECUs is complicated by the dynamic channel properties that the car experiences as it travels through areas with different radio interference patterns, such as urban versus highway driving, or even different road quality, which may physically perturb the wireless sensors. This thesis develops a suite of reliable and efficient communication schemes built upon feedback-based rateless codes, and with a target application of vehicular networks. In particular, we first investigate the feasibility of multi-hop networking for intra-car WSN, and illustrate the potential gains of using the Collection Tree Protocol (CTP), the current state of the art in multi-hop data aggregation. Our results demonstrate, for example, that the packet delivery rate of a node using a single-hop topology protocol can be below 80% in practical scenarios, whereas CTP improves reliability performance beyond 95% across all nodes while simultaneously reducing radio energy consumption. Next, in order to migrate from a wired intra-car network to a wireless system, we consider an intermediate step to deploy a hybrid communication structure, wherein wired and wireless networks coexist. Towards this goal, we design a hybrid link scheduling algorithm that guarantees reliability and robustness under harsh vehicular environments. We further enhance the hybrid link scheduler with the rateless codes such that information leakage to an eavesdropper is almost zero for finite block lengths. In addition to reliability, one key requirement for coded communication schemes is to achieve a fast decoding rate. This feature is vital in a wide spectrum of communication systems, including multimedia and streaming applications (possibly inside vehicles) with real-time playback requirements, and delay-sensitive services, where the receiver needs to recover some data symbols before the recovery of entire frame. To address this issue, we develop feedback-based rateless codes with dynamically-adjusted nonuniform symbol selection distributions. Our simulation results, backed by analysis, show that feedback information paired with a nonuniform distribution significantly improves the decoding rate compared with the state of the art algorithms. We further demonstrate that amount of feedback sent can be tuned to the specific transmission properties of a given feedback channel

    NASA SBIR abstracts of 1992, phase 1 projects

    Get PDF
    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Robust and Scalable Data Representation and Analysis Leveraging Isometric Transformations and Sparsity

    Get PDF
    The main focus of this doctoral thesis is to study the problem of robust and scalable data representation and analysis. The success of any machine learning and signal processing framework relies on how the data is represented and analyzed. Thus, in this work, we focus on three closely related problems: (i) supervised representation learning, (ii) unsupervised representation learning, and (iii) fault tolerant data analysis. For the first task, we put forward new theoretical results on why a certain family of neural networks can become extremely deep and how we can improve this scalability property in a mathematically sound manner. We further investigate how we can employ them to generate data representations that are robust to outliers and to retrieve representative subsets of huge datasets. For the second task, we will discuss two different methods, namely compressive sensing (CS) and nonnegative matrix factorization (NMF). We show that we can employ prior knowledge, such as slow variation in time, to introduce an unsupervised learning component to the traditional CS framework and to learn better compressed representations. Furthermore, we show that prior knowledge and sparsity constraint can be used in the context of NMF, not to find sparse hidden factors, but to enforce other structures, such as piece-wise continuity. Finally, for the third task, we investigate how a data analysis framework can become robust to faulty data and faulty data processors. We employ Bayesian inference and propose a scheme that can solve the CS recovery problem in an asynchronous parallel manner. Furthermore, we show how sparsity can be used to make an optimization problem robust to faulty data measurements. The methods investigated in this work have applications in different practical problems such as resource allocation in wireless networks, source localization, image/video classification, and search engines. A detailed discussion of these practical applications will be presented for each method
    corecore