704 research outputs found

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    Analysis of the reconfiguration latency and energy overheads for a Xilinx Virtex-5 FPGA

    Get PDF
    In this paper we have evaluated the overhead and the tradeoffs of a set of components usually included in a system with run-time partial reconfiguration implemented on a Xilinx Virtex-5. Our analysis shows the benefits of including a scratchpad memory inside the reconfiguration controller in order to improve the efficiency of the reconfiguration process. We have designed a simple controller for this scratchpad that includes support for prefetching and caching in order to further reduce both the energy and latency overhead

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Low-Overhead Online Assessment of Timely Progress as a System Commodity

    Get PDF

    MobiPADS: a reflective middleware for context-aware mobile computing

    Get PDF
    distributed computing services that essentially abstract the underlying network services to a monolithic “black box. ” In a mobile operating environment, the fundamental assumption of middleware abstracting a unified distributed service for all types of applications operating over a static network infrastructure is no longer valid. In particular, mobile applications are not able to leverage the benefits of adaptive computing to optimize its computation based on current contextual situations. In this paper, we introduce the Mobile Platform for Actively Deployable Service (MobiPADS) system. MobiPADS is designed to support context-aware processing by providing an executing platform to enable active service deployment and reconfiguration of the service composition in response to environments of varying contexts. Unlike most mobile middleware, MobiPADS supports dynamic adaptation at both the middleware and application layers to provide flexible configuration of resources to optimize the operations of mobile applications. Within the MobiPADS system, services (known as mobilets) are configured as chained service objects to provide augmented services to the underlying mobile applications so as to alleviate the adverse conditions of a wireless environment. Index Terms—Middleware, mobile applications, mobile computing support services, mobile environments.
    • …
    corecore