266,816 research outputs found

    Design of QMF (Quadrature Mirror Filter) in spatial domain and edge encoding

    Get PDF
    Simoncelli and Adelson have extended the one dimensional Quadrature Mirror Filter (QMF) to two dimensions with hexagon symmetry and three dimensional spatio-temporal extensions with rhombic-duodecahedray symmetry. Jain and Crochiere presented an excellent QMF design technique in the time domain. It is proposed to extend the design of a two dimensional QMF over a rectangular lattice in the spatial domain based primarily on the extension of the idea of Jain and Crochiere. In addition, the design will investigate the use of two dimensional Z-transformations. Since this proposed QMF is intended for the applications in image processing, all the important and interesting engineering issues will be addressed throughout the development phase. The design of a two dimensional QMF is discussed. The motivation is to achieve an extremely high data compression ratio. It is entirely possible to achieve dramatic results when pattern recognition techniques are employed. The final goal is the demonstration of extremely high data compression ratios using NASA pictures

    On compression rate of quantum autoencoders: Control design, numerical and experimental realization

    Full text link
    Quantum autoencoders which aim at compressing quantum information in a low-dimensional latent space lie in the heart of automatic data compression in the field of quantum information. In this paper, we establish an upper bound of the compression rate for a given quantum autoencoder and present a learning control approach for training the autoencoder to achieve the maximal compression rate. The upper bound of the compression rate is theoretically proven using eigen-decomposition and matrix differentiation, which is determined by the eigenvalues of the density matrix representation of the input states. Numerical results on 2-qubit and 3-qubit systems are presented to demonstrate how to train the quantum autoencoder to achieve the theoretically maximal compression, and the training performance using different machine learning algorithms is compared. Experimental results of a quantum autoencoder using quantum optical systems are illustrated for compressing two 2-qubit states into two 1-qubit states

    Context dependent prediction and category encoding for DPCM image compression

    Get PDF
    Efficient compression of image data requires the understanding of the noise characteristics of sensors as well as the redundancy expected in imagery. Herein, the techniques of Differential Pulse Code Modulation (DPCM) are reviewed and modified for information-preserving data compression. The modifications include: mapping from intensity to an equal variance space; context dependent one and two dimensional predictors; rationale for nonlinear DPCM encoding based upon an image quality model; context dependent variable length encoding of 2x2 data blocks; and feedback control for constant output rate systems. Examples are presented at compression rates between 1.3 and 2.8 bits per pixel. The need for larger block sizes, 2D context dependent predictors, and the hope for sub-bits-per-pixel compression which maintains spacial resolution (information preserving) are discussed

    Three-dimensional face recognition: An Eigensurface approach

    Get PDF
    We evaluate a new approach to face recognition using a variety of surface representations of three-dimensional facial structure. Applying principal component analysis (PCA), we show that high levels of recognition accuracy can be achieved on a large database of 3D face models, captured under conditions that present typical difficulties to more conventional two-dimensional approaches. Applying a ran-c of image processing, techniques we identify the most effective surface representation for use in such application areas as security surveillance, data compression and archive searching

    TF34 engine compression system computer study

    Get PDF
    The stability of the fan and the compressor components was examined individually using linearized and time dependent, one dimensional stability analysis techniques. The stability of the fan core integrated compression system was investigated using a two dimensional compression system model. The analytical equations on which this model was based satisfied the mass, axial momentum, radial momentum, and energy conservation equations for flow through a finite control volume. The results gave an accurate simulation of the flow through the compression system. The speed lines of the components were reproduced; the points of instability were accurately predicted; the locations where the instability was initiated in the fan and the core were indicated; and the variation of the bypass ratio during flow throttling was calculated. The validity of the analytical techniques was then established by comparing these results with test data and with results obtained from the steady state cycle deck
    corecore