654 research outputs found

    ECG data compression using a neural network model based on multi-objective optimization

    Full text link
    Β© 2017 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transformation is applied to the processing of signal wave for reducing computational time. For the lossless compression requirement, wavelet-transformation that is a coding algorithm can be used to avoid loss of data. In practice, compression is required to avoid storing redundant recording data that are not useful in the diagnosis platform. The obtained data can be preprocessed to remove noise by using wavelet transform, and then a multi-objective optimize neural network model is used to extract feature information. Compared with the existing traditional methods such as direct data processing method and transform method, our proposed compression model has self-learning ability to achieve high data compression ratio at 1:19 without losing important ECG information and compromising quality. Upon testing, we demonstrated that the proposed ECG data compression method based on multi-objective optimization neural network is effective and efficient in clinical practice

    Wavelet Signal Processing of Physiologic Waveforms

    Get PDF
    The prime objective of this piece of work is to devise novel techniques for computer based classification of Electrocardiogram (ECG) arrhythmias with a focus on less computational time and better accuracy. As an initial stride in this direction, ECG beat classification is achieved by using feature extracting techniques to make a neural network (NN) system more effective. The feature extraction technique used is Wavelet Signal Processing. Coefficients from the discrete wavelet transform were used to represent the ECG diagnostic information and features were extracted using the coefficients and were normalised. These feature sets were then used in the classifier i.e. a simple feed forward back propagation neural network (FFBNN). This paper presents a detail study of the classification accuracy of ECG signal by using these four structures for computationally efficient early diagnosis. Neural network used in this study is a well-known neural network architecture named as multi-Layered perceptron (MLP) with back propagation training algorithm. The ECG signals have been taken from MIT-BIH ECG database, and are used in training to classify 3 different Arrhythmias out of ten arrhythmias. These are normal sinus rhythm, paced beat, left bundle branch block. Before testing, the proposed structures are trained by back propagation algorithm. The results show that the wavelet decomposition method is very effective and efficient for fast computation of ECG signal analysis in conjunction with the classifier

    Use of Wavelets in Electrocardiogram Research: a Literature Review

    Get PDF
    Currently the introduction and detection of heart abnormalities using electrocardiogram (ECG) is very much. ECG conducted many research approaches in various methods, one of which is wavelet. This article aims to explain the trends of ECG research using wavelet approach in the last ten years. We reviewed journals with the keyword title "ecg wavelet" and published from 2011 to 2020. Articles classified by the most frequently discussed topics include: datasets, case studies, pre-processing, feature extraction and classification/identification methods. The increase in the number of ECG-related articles in recent years is still growing in new ways and methods. This study is very interesting because only a few researchers focus on researching about it. Several approaches from many researchers are used to obtain the best results, both by using machine learning and deep learning. This article will provide further explanation of the most widely used algorithms against ECG research with wavelet approaches. At the end of this article it is also shown that the critical aspect of ECG research can be done in the future is the use of datasets, as well as the extraction of characteristics and classifications by looking at the level of accuracy

    Wavelet analysis of compressed biomedical signals

    Get PDF
    The paper proposes mathematical apparatus that can be used for wavelet analysis of compressed biomedical signals. As an example of biomedical signals, electrocardiogram and electroencephalogram are considered. A brief description of these signals is given. In the basis of the proposed algorithm of wavelet analysis of compressed biomedical signals lies the use of wavelet decomposition of the signal with the subsequent analysis of approximating coefficients of the set level with the use of continuous wavelet transform and synthesized wavelet. Below is suggested a brief description of the wavelet synthesis procedure for continuous wavelet transform as well as neural network and spline wavelet models proposed by the author. It has been practically proven that application of this algorithm allows us to compress electrocardiogram and electroencephalogram 8 times. In this case possibility to detect the target feature in biomedical signal based on the analysis results of the continuous wavelet transform. Noted, however, that the use of wavelet compression results in a loss of high frequency information in a signal. Therefore, the algorithm must not be applied in cases where the preservation of small fragments in a signal typical of high-frequency components is very important. This algorithm can be applied in the implementation of wavelet analysis of biomedical signals system on mobile devices, where it is important to reduce the amount of stored, transmitted and / or processed information

    Biomedical Applications of the Discrete Wavelet Transform

    Get PDF

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, BjΓΆrn Eskofier, Socrates Dokos, Derek Abbot
    • …
    corecore