747 research outputs found

    Design and Optimization of Dynamic System for a One-kW Free Piston Linear Engine Alternator-GENSETS Program

    Get PDF
    In power/energy systems, free-piston linear machines are referred to as a mechanism where the constrained crank motion is eliminated and replaced with free reciprocating piston motion. Depending on the application, the piston motion can be converted into other types of energy and includes compressed air/fluid, electricity, and high temperature/pressure gas. A research group at West Virginia University developed a free-piston linear engine alternator (LEA) in 1998 and have achieved significant accomplishment in the performance enhancement of the LEAs to date. The present LEA design incorporates flexure springs as energy restoration components and as bearing supports. The advantages of using flexure springs are threefold and include: (1) it increases the LEA’s stiffness and resonant frequency, and hence the power density; (2) it eliminates the need for rotary or linear bearings and lubrication system; and (3) it reduces the overall frictional contact area in the translator assembly which improves the durability. The current research focuses on the design and optimization of the flexure springs as the system’s resonant dominating component for a 1 kW free-piston LEA. First, the flexure springs were characterized according to the LEA’s target outputs and dimensional limitations. The finite element method (FEM) was used to analyze the stress/strain, different modes of deformation, and fatigue life of a range of flexure spring designs under dynamic loadings. Primary geometric design variables included the number of arms, inside and outside diameter, thickness, and arm’s length. To find the near-optimum designs, a machine learning algorithm incorporating the FEM results was used in order to find the sensitivity of the target outputs to the geometrical parameters. From the results, design charts were extracted as a guideline to flexure spring selection for a range of operations. Then, methods were introduced, investigated, and analyzed to improve the overall energy conversion performance and service life of the flexure springs and the overall LEA system. These included: a transient FE tool used for fatigue analysis to quantify the life and factors of safety of the flexure springs as well as the spring’s hysteresis; a fluid/structure interaction model used to quantify the energy loss due to drag force applied on the flexures’ side surfaces; packaging of multiple flexures to increase the overall stiffness and to reduce the vibration-induced stresses on flexure arms due to higher harmonics; a model to investigate the two-way interactions of the flexures’ dynamics with the alternator and engine components to find an optimum selection of the LEA’s assembly; a non-linear friction analysis to identify/quantify the energy losses due to the friction of the sliding surfaces of the flexures and spacers; and a series of static and transient experiment to determine the non-linearity of flexures’ stiffness and comparison to FEM results and for validation of the energy audit results from numerical and analytical calculations. With over 6000 flexure designs evaluated using artificial intelligent methods, the maximum achievable resonant frequency of a single flexure spring for a 1 kW LEA was found to be around 150 Hz. From the FEM results, it was found that under dynamic conditions the stress levels to be as high as twice the maximum stress under static (or very low speed) conditions. Modifications of the arm’s end shape and implementation of a shape factor were found as effective methods to reduce the maximum stress by 20%. The modal analysis showed that the most damaging modes of deformations of a flexure spring were the second to fourth modes, depending on the number of arms and symmetry of the design. Experiment and FEM results showed that using bolted packaging of the springs can damp a portion of the vibration and improve the performance. The drag force loss was found to account for 10-15% of the mechanical losses in a 100 Wnet LEA prototype. From the manufacturing perspective, use of water jet was found the most economical method for manufacturing the flexures which could make the commercial production of the LEAs feasible; however, for high-efficiency, high-durability machines, additional material treatments, and alternative manufacturing methods are essential

    A review of variable-pitch propellers and their control strategies in aerospace systems

    Full text link
    The relentless pursuit of aircraft flight efficiency has thrust variable-pitch propeller technology into the forefront of aviation innovation. This technology, rooted in the ancient power unit of propellers, has found renewed significance, particularly in the realms of unmanned aerial vehicles and urban air mobility. This underscores the profound interplay between visionary aviation concepts and the enduring utility of propellers. Variable-pitch propellers are poised to be pivotal in shaping the future of human aviation, offering benefits such as extended endurance, enhanced maneuverability, improved fuel economy, and prolonged engine life. However, with additional capabilities come new technical challenges. The development of an online adaptive control of variable-pitch propellers that does not depend on an accurate dynamic model stands as a critical imperative. Therefore, a comprehensive review and forward-looking analysis of this technology is warranted. This paper introduces the development background of variable-pitch aviation propeller technology, encompassing diverse pitch angle adjustment schemes and their integration with various engine types. It places a central focus on the latest research frontiers and emerging directions in pitch control strategies. Lastly, it delves into the research domain of constant speed pitch control, articulating the three main challenges confronting this technology: inadequacies in system modeling, the intricacies of propeller-engine compatibility, and the impact of external, time-varying factors. By shedding light on these multifaceted aspects of variable-pitch propeller technology, this paper serves as a resource for aviation professionals and researchers navigating the intricate landscape of future aircraft development

    Design, Modeling and Optimization of Reciprocating Tubular Permanent Magnet Linear Generators for Free Piston Engine Applications

    Get PDF
    Permanent Magnet Linear Generators (PMLG) are electric generators which convert the linear motion into electricity. One of the applications of the PMLG system is with free piston engines. Here, the piston is moved by the expander using an internal combustion engine or a Stirling engine. Other applications of the PMLG are wave energy conversion, micro energy harvesters, and supercritical CO2 expander systems. The most common technology of the electric generators is a rotary electric generator. The current technology of the engine-generators (GENSET) is of a rotary type which uses a crankshaft to convert the linear motion to rotary motion coupled to a rotary electric generator. This technology can be improved by using PMLG in the place of rotary generators by eliminating the crankshaft in the system. This research thesis is to introduce a new design guideline and steps to design and optimize a PMLG for linear reciprocating applications. The new design guideline provides the steps and techniques to calculate the electrical and geometrical parameters of the PMLG system with experimental verification. A finite element (FE) model of the PMLG system was developed using Finite Element Method Magnetics (FEMM) software. Furthermore, two experimental prototypes of the reciprocating engine PMLG were constructed and tested. The results from the experimental prototype were compared with the FE model and errors less than 10 % were found. One of the important aspects of the reciprocating free piston engines is to have a low moving mass of the translator to increase the frequency of the system. Therefore, using the FE model, sensitivity study of different geometric parameters such as the magnet thickness, outer diameter of the magnet, airgap, frequency, stroke length, turns, poles, and spacer of the PMLG system was performed. It was found that the magnet thickness has a greater power / moving mass ratio compared to the other geometric parameters. Furthermore, an optimization routine was developed to optimize the PMLG system with low moving mass and low volume. Finally, a MATLAB GUI was developed for the optimization routine to simplify the process of optimization for new designers of the PMLG system

    Ion current sensing for controlled auto ignition in internal combustion engines

    Get PDF
    Envirom-nental pollution is a subject that needs urgent addressing. Since the internal combustion engine has its fair share of accountability on this, research on techniques for increasing engine efficiency and emissions is necessary. Controlled Auto Ignition is a promising combustion mode, which increases fuel efficiency while also reducing NOx emissions to negligible levels. This Thesis concentrates on the implementation of this mode through experimental research, on an engine equipped with a fully variable valvetrain. Investigation of the operational window, emissions, fuel consumption, thermodynamic efficiency is carried out and ways to improve on these are discussed. The governing consideration, however, is the control method for this rather intricate combustion mode. As such, experimental data acquisition and analysis of ion current under the whole operating spectrum, from spark ignition to full autoignition is made. It is found that the expected gains in fuel consumption and emissions are realized. In addition, ion current proves to be a very powerful and cost effective tool for engine monitoring, diagnosis and control. The author concludes that Controlled Auto Ignition is a viable proposition for mass production engine designs and that ion current, although not absolutely vital for engine control, considerably increases engine control thus allowing for greater operating window under autoignition, without compromising reliability or cost.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Monitoring of the piston ring-pack and cylinder liner interface in diesel engines through acoustic emission measurements

    Get PDF
    Investigation of novel condition monitoring systems for diesel engines has received much recent attention due to the increasing demands placed upon engine components and the limitations of conventional techniques. This thesis documents experimental research conducted to assess the monitoring capabilities of Acoustic Emission (AE) analysis. In particular it focuses on the possibility of monitoring the piston ring-pack and cylinder liner interface, a critical engine sub-system for which there are currently few practical monitoring options. A series of experiments were performed on large, two-stroke and small, four-stroke diesel engines. Tests under normal operating conditions developed a detailed understanding of typical AE generation in terms of both the source mechanisms and the characteristics of the resulting activity. This was supplemented by specific tests to investigate possible AE generation at the ring-pack/liner interface. For instance, for the small engines measures were taken to remove known AE sources in order to accentuate any activity originating at the interface whilst for the large engines the interfacial conditions were purposely deteriorated through the removal of the lubricating oil supply to one cylinder. Interpretation of the results was based mainly upon comparisons with published work encompassing both the expected ring-pack behaviour and AE generation from tribological processes. This provided a strong indication that the source of the ring-pack/liner AE activity was the boundary frictional losses. The ability to monitor this process may be of significant benefit to engine operators as it enhances the diagnostic information currently available and may be incorporated into predictive maintenance strategies. A further diagnostic technique considered was the possibility of using AE parameters combined with information of crankshaft speed fluctuations to evaluate engine balance and identify underperforming cylinders.EU Competitive and Sustainable Growth Programme, Project no: GRD2-2001-5001

    Small Internal Combustion Engine Testing for a Hybrid-Electric Remotely-Piloted Aircraft

    Get PDF
    Efficient operation of a hybrid-electric propulsion system (HEPS) powering a small remotely-piloted aircraft (RPA) requires that a controller have accurate and detailed engine and electric motor performance data. Many small internal combustion engines (ICEs) currently used on various small RPA were designed for use by the recreational hobbyist radio-control (R/C) aircraft market. Often, the manufacturers of these engines do not make accurate and reliable detailed engine performance data available for their engines. A dynamometer testing stand was assembled to test various small ICEs. These engines were tested with automotive unleaded gasoline (the manufacturer\u27s recommended fuel) using the dynamometer setup. Torque, engine speed and fuel flow measurements were taken at varying load and throttle settings. Power and specific fuel consumption (SFC) data were calculated from these measurements. Engine performance maps were generated in which contours of SFC were mapped on a mean effective pressure (MEP) versus engine speed plot. These performance maps are to be utilized for performance testing of the controller and integrated HEPS in further research. Further follow-on research and development will be done to complete the goal of building a prototype hybrid-electric remotely piloted aircraft (HE-RPA) for flight testing. Minimum BSFC for the Honda GX35 engine was found to be 383.6 g/kW hr (0.6307 lbm/hp hr) at 4500 RPM and 60% throttle. The Honda GX35 was overall the better fit for incorporation into the HE-RPA

    Acoustic emission monitoring of propulsion systems : a laboratory study on a small gas turbine

    Get PDF
    The motivation of the work is to investigate a new, non-intrusive condition monitoring system for gas turbines with capabilities for earlier identification of any changes and the possibility of locating the source of the faults. This thesis documents experimental research conducted on a laboratory-scale gas turbine to assess the monitoring capabilities of Acoustic Emission (AE). In particular it focuses on understanding the AE behaviour of gas turbines under various normal and faulty running conditions. A series of tests was performed with the turbine running normally, either idling or with load. Two abnormal running configurations were also instrumented in which the impeller was either prevented from rotation or removed entirely. With the help of demodulated resonance analysis and an ANN it was possible to identify two types of AE; a background broadband source which is associated with gas flow and flow resistance, and a set of spectral frequency peaks which are associated with reverberation in the exhaust and coupling between the alternator and the turbine. A second series of experiments was carried out with an impeller which had been damaged by removal of the tips of some of the blades (two damaged blades and four damaged blades). The results show the potential capability of AE to identify gas turbine blade faults. The AE records showed two obvious indicators of blade faults, the first being that the energy in the AE signals becomes much higher and is distinctly periodic at higher speeds, and the second being the appearance of particular pulse patterns which can be characterized in the demodulated frequency domain

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit
    • 

    corecore