869 research outputs found

    Lossless compression of image data products on th e FIFE CD-ROM series

    Get PDF
    How do you store enough of the key data sets, from a total of 120 gigabytes of data collected for a scientific experiment, on a collection of CD-ROM's, small enough to distribute to a broad scientific community? In such an application where information loss in unacceptable, lossless compression algorithms are the only choice. Although lossy compression algorithms can provide an order of magnitude improvement in compression ratios over lossless algorithms the information that is lost is often part of the key scientific precision of the data. Therefore, lossless compression algorithms are and will continue to be extremely important in minimizing archiving storage requirements and distribution of large earth and space (ESS) data sets while preserving the essential scientific precision of the data

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    Get PDF
    Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure

    Some practical aspects of lossless and nearly-lossless compression of AVHRR imagery

    Get PDF
    Compression of Advanced Very high Resolution Radiometers (AVHRR) imagery operating in a lossless or nearly-lossless mode is evaluated. Several practical issues are analyzed including: variability of compression over time and among channels, rate-smoothing buffer size, multi-spectral preprocessing of data, day/night handling, and impact on key operational data applications. This analysis is based on a DPCM algorithm employing the Universal Noiseless Coder, which is a candidate for inclusion in many future remote sensing systems. It is shown that compression rates of about 2:1 (daytime) can be achieved with modest buffer sizes (less than or equal to 2.5 Mbytes) and a relatively simple multi-spectral preprocessing step

    Band Ordering in Lossless Compression of Multispectral Images

    Get PDF
    In this paper, we consider a model of lossless image compression in which each band of a multispectral image is coded using a prediction function involving values from a previously coded band of the compression, and examine how the ordering of the bands affects the achievable compression. We present an efficient algorithm for computing the optimal band ordering for a multispectral image. This algorithm has time complexity O(n2) for an n-band image, while the naive algorithm takes time &#x03A9(n!). A slight variant of the optimal ordering problem that is motivated by some practical concerns is shown to be NP-hard, and hence, computationally infeasible, in all cases except for the most trivial possibility. In addition, we report on our experimental findings using the algorithms designed in this paper applied to real multispectral satellite data. The results show that the techniques described here hold great promise for application to real-world compression needs

    Radiometric resolution enhancement by lossy compression as compared to truncation followed by lossless compression

    Get PDF
    Recent advances in imaging technology make it possible to obtain imagery data of the Earth at high spatial, spectral and radiometric resolutions from Earth orbiting satellites. The rate at which the data is collected from these satellites can far exceed the channel capacity of the data downlink. Reducing the data rate to within the channel capacity can often require painful trade-offs in which certain scientific returns are sacrificed for the sake of others. In this paper we model the radiometric version of this form of lossy compression by dropping a specified number of least significant bits from each data pixel and compressing the remaining bits using an appropriate lossless compression technique. We call this approach 'truncation followed by lossless compression' or TLLC. We compare the TLLC approach with applying a lossy compression technique to the data for reducing the data rate to the channel capacity, and demonstrate that each of three different lossy compression techniques (JPEG/DCT, VQ and Model-Based VQ) give a better effective radiometric resolution than TLLC for a given channel rate

    Progressive Vector Quantization on a massively parallel SIMD machine with application to multispectral image data

    Get PDF
    A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method

    Development of convection along the SPCZ within a Madden-Julian oscillation

    Get PDF
    A subtropical Rossby wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific Convergence Zone (SPCZ) that is observed in a significant proportion of Madden-Julian Oscillations (MJOs). Large scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby wave response with an upper tropospheric anticyclone, centred over or slightly to the west of the convection. Large potential vorticity (PV) gradients, associated with the subtropical jet and the tropopause, lie just poleward of the anticyclone and large magnitude PV air is advected equatorwards on the eastern side of the anticyclone. This ``high'' PV air, or upper tropospheric trough, is far enough off the equator that it has associated strong horizontal temperature gradients, and it induces deep ascent on its eastern side, at a latitude of about 15-30\degr. If this deep ascent is over a region susceptible to deep convection, such as the SPCZ region, then convection may be forced or triggered. Hence convection develops along the SPCZ as a forced response to convection over Indonesia. The response mechanism is essentially one of subtropical Rossby wave propagation. This hypothesis is based on a case study of a particularly strong MJO in early 1988, and is tested by idealised modelling studies. The mechanism may also be relevant to the existence of the mean SPCZ, as a forced response to mean Indonesian convection

    The Space and Earth Science Data Compression Workshop

    Get PDF
    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system
    • …
    corecore