168,649 research outputs found

    Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap

    Get PDF
    One-dimensional nonlinear phononic crystals have been assembled from periodic diatomic chains of stainless steel cylinders alternated with Polytetrafluoroethylene spheres. This system allows dramatic changes of behavior (from linear to strongly nonlinear) by application of compressive forces practically without changes of geometry of the system. The relevance of classical acoustic band-gap, characteristic for chain with linear interaction forces and derived from the dispersion relation of the linearized system, on the transformation of single and multiple pulses in linear, nonlinear and strongly nonlinear regimes are investigated with numerical calculations and experiments. The limiting frequencies of the acoustic band-gap for investigated system with given precompression force are within the audible frequency range (20–20,000 Hz) and can be tuned by varying the particle’s material properties, mass and initial compression. In the linear elastic chain the presence of the acoustic band-gap was apparent through fast transformation of incoming pulses within very short distances from the chain entrance. It is interesting that pulses with relatively large amplitude (nonlinear elastic chain) exhibit qualitatively similar behavior indicating relevance of the acoustic band gap also for transformation of nonlinear signals. The effects of an in situ band-gap created by a mean dynamic compression are observed in the strongly nonlinear wave regime

    Efficient SAR Raw Data Compression in Frequency Domain

    Get PDF
    SAR raw data compression is necessary to reduce huge amounts of SAR data for a memory on board a satellite, space shuttle or aircraft and for later downlink to a ground station. In view of interferometric and polarimetric applications for SAR data, it becomes more and more important to pay attention to phase errors caused by data compression. Herein, a detailed comparison of block adaptive quantization in time domain (BAQ) and in frequency domain (FFT-BAQ) is given. Inclusion of raw data compression in the processing chain allows an efficient use of the FFT-BAQ and makes implementation for on-board data compression feasible. The FFT-BAQ outperforms the BAQ in terms of signal-to-quantization noise ratio and phase error and allows a direct decimation of the oversampled data equivalent to FIR-filtering in time domain. Impacts on interferometric phase and coherency are also given

    Information-Preserving Markov Aggregation

    Full text link
    We present a sufficient condition for a non-injective function of a Markov chain to be a second-order Markov chain with the same entropy rate as the original chain. This permits an information-preserving state space reduction by merging states or, equivalently, lossless compression of a Markov source on a sample-by-sample basis. The cardinality of the reduced state space is bounded from below by the node degrees of the transition graph associated with the original Markov chain. We also present an algorithm listing all possible information-preserving state space reductions, for a given transition graph. We illustrate our results by applying the algorithm to a bi-gram letter model of an English text.Comment: 7 pages, 3 figures, 2 table
    • …
    corecore