972 research outputs found

    Spinal cord gray matter segmentation using deep dilated convolutions

    Get PDF
    Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and was also recently found relevant as a biomarker for disability in amyotrophic lateral sclerosis. The ability to automatically segment the GM is, therefore, an important task for modern studies of the spinal cord. In this work, we devise a modern, simple and end-to-end fully automated human spinal cord gray matter segmentation method using Deep Learning, that works both on in vivo and ex vivo MRI acquisitions. We evaluate our method against six independently developed methods on a GM segmentation challenge and report state-of-the-art results in 8 out of 10 different evaluation metrics as well as major network parameter reduction when compared to the traditional medical imaging architectures such as U-Nets.Comment: 13 pages, 8 figure

    Segmentation of the Cerebrospinal Fluid from MRI Images for the Treatment of Disc Herniations

    Get PDF
    About 80 percent of people are affected at some point in their lives by lower back pain, which is one of the most common neurological diseases and reasons for long-term disability in the United States. The symptoms are primarily caused by overly heavy lifting and/or overstretching of the back, leading to a rupture and an outward bulge of an intervertebral disc, which puts pressure on and pinches the nerve fibers of the spine. The most common form is a lumbar disc herniation between the fourth and fifth lumbar vertebra and between the fifth lumbar vertebra and the sacrum. In recent years the diagnosis of lower back pain has improved, mainly due to enhanced imaging techniques and imaging quality, but the surgical therapy remains hazardous. Reasons for this include low visibility when accessing the lumbar area and the high risk of causing permanent damage when touching the nerve fibers. A new approach for increasing patient safety is the segmentation and visualization of the cerebrospinal fluid in the lower lumbar region of the vertebral column. For this purpose a new fully-automatic and a semi-automatic approach were developed for separating the cerebrospinal fluid from its surroundings on T2-weighted MRI scans of the lumbar vertebra. While the fully-automatic algorithm is realized by a model-based searching method and a volume-based segmentation, the semi-automatic algorithm requires a seed point and performs the segmentation on individual axial planes through a combination of a region-based segmentation algorithm and a thresholding filter. Both algorithms have been applied to four T2-weighted MRI datasets and are compared with a gold-standard segmentation. The segmentation overlap with the gold-standard was 78.7 percent for the fully-automatic algorithm and 93.1 percent for the semi-automatic algorithm. In the pathological region the fully-automatic algorithm obtained a similarity of 56.6 percent, compared to 87.8 percent for the semi-automatic algorithm

    Mathematics in Medical Diagnostics - 2022 Proceedings of the 4th International Conference on Trauma Surgery Technology

    Get PDF
    The 4th event of the Giessen International Conference Series on Trauma Surgery Technology took place on April, the 23rd 2022 in Warsaw, Poland. It aims to bring together practical application research, with a focus on medical imaging, and the TDA experts from Warsaw. This publication contains details of our presentations and discussions
    • …
    corecore