293 research outputs found

    Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment

    Full text link
    Ren et al. recently introduced a method for aggregating multiple decision trees into a strong predictor by interpreting a path taken by a sample down each tree as a binary vector and performing linear regression on top of these vectors stacked together. They provided experimental evidence that the method offers advantages over the usual approaches for combining decision trees (random forests and boosting). The method truly shines when the regression target is a large vector with correlated dimensions, such as a 2D face shape represented with the positions of several facial landmarks. However, we argue that their basic method is not applicable in many practical scenarios due to large memory requirements. This paper shows how this issue can be solved through the use of quantization and architectural changes of the predictor that maps decision tree-derived encodings to the desired output.Comment: BMVC Newcastle 201

    Efficient Deep Learning in Network Compression and Acceleration

    Get PDF
    While deep learning delivers state-of-the-art accuracy on many artificial intelligence tasks, it comes at the cost of high computational complexity due to large parameters. It is important to design or develop efficient methods to support deep learning toward enabling its scalable deployment, particularly for embedded devices such as mobile, Internet of things (IOT), and drones. In this chapter, I will present a comprehensive survey of several advanced approaches for efficient deep learning in network compression and acceleration. I will describe the central ideas behind each approach and explore the similarities and differences between different methods. Finally, I will present some future directions in this field

    Literature Review of Deep Network Compression

    Get PDF
    Deep networks often possess a vast number of parameters, and their significant redundancy in parameterization has become a widely-recognized property. This presents significant challenges and restricts many deep learning applications, making the focus on reducing the complexity of models while maintaining their powerful performance. In this paper, we present an overview of popular methods and review recent works on compressing and accelerating deep neural networks. We consider not only pruning methods but also quantization methods, and low-rank factorization methods. This review also intends to clarify these major concepts, and highlights their characteristics, advantages, and shortcomings

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio
    corecore