896 research outputs found

    Geometry-Oblivious FMM for Compressing Dense SPD Matrices

    Full text link
    We present GOFMM (geometry-oblivious FMM), a novel method that creates a hierarchical low-rank approximation, "compression," of an arbitrary dense symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an approximate matrix-vector multiplication in NlogNN \log N or even NN time, where NN is the matrix size. Compression requires NlogNN \log N storage and work. In general, our scheme belongs to the family of hierarchical matrix approximation methods. In particular, it generalizes the fast multipole method (FMM) to a purely algebraic setting by only requiring the ability to sample matrix entries. Neither geometric information (i.e., point coordinates) nor knowledge of how the matrix entries have been generated is required, thus the term "geometry-oblivious." Also, we introduce a shared-memory parallel scheme for hierarchical matrix computations that reduces synchronization barriers. We present results on the Intel Knights Landing and Haswell architectures, and on the NVIDIA Pascal architecture for a variety of matrices.Comment: 13 pages, accepted by SC'1

    A distributed-memory package for dense Hierarchically Semi-Separable matrix computations using randomization

    Full text link
    We present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable representations (HSS). Such matrices appear in many applications, e.g., finite element methods, boundary element methods, etc. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, relies on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. This work is part of a more global effort, the STRUMPACK (STRUctured Matrices PACKage) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver

    Randomized Strong Recursive Skeletonization: Simultaneous compression and factorization of H\mathcal{H}-matrices in the Black-Box Setting

    Full text link
    The hierarchical matrix (H2\mathcal{H}^{2}-matrix) formalism provides a way to reinterpret the Fast Multipole Method and related fast summation schemes in linear algebraic terms. The idea is to tessellate a matrix into blocks in such as way that each block is either small or of numerically low rank; this enables the storage of the matrix and the application of it to a vector in linear or close to linear complexity. A key motivation for the reformulation is to extend the range of dense matrices that can be represented. Additionally, H2\mathcal{H}^{2}-matrices in principle also extend the range of operations that can be executed to include matrix inversion and factorization. While such algorithms can be highly efficient for certain specialized formats (such as HBS/HSS matrices based on ``weak admissibility''), inversion algorithms for general H2\mathcal{H}^{2}-matrices tend to be based on nested recursions and recompressions, making them challenging to implement efficiently. An exception is the \textit{strong recursive skeletonization (SRS)} algorithm by Minden, Ho, Damle, and Ying, which involves a simpler algorithmic flow. However, SRS greatly increases the number of blocks of the matrix that need to be stored explicitly, leading to high memory requirements. This manuscript presents the \textit{randomized strong recursive skeletonization (RSRS)} algorithm, which is a reformulation of SRS that incorporates the randomized SVD (RSVD) to simultaneously compress and factorize an H2\mathcal{H}^{2}-matrix. RSRS is a ``black box'' algorithm that interacts with the matrix to be compressed only via its action on vectors; this extends the range of the SRS algorithm (which relied on the ``proxy source'' compression technique) to include dense matrices that arise in sparse direct solvers

    Hierarchical interpolative factorization for elliptic operators: differential equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for elliptic partial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This factorization takes the form of an approximate generalized LU/LDL decomposition that facilitates the efficient inversion of the discretized operator. HIF-DE is based on the multifrontal method but uses skeletonization on the separator fronts to sparsify the dense frontal matrices and thus reduce the cost. We conjecture that this strategy yields linear complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity in 3D can be achieved by skeletonizing the compressed fronts themselves, which amounts geometrically to a recursive dimensional reduction scheme. Numerical experiments support our claims and further demonstrate the performance of our algorithm as a fast direct solver and preconditioner. MATLAB codes are freely available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math. arXiv admin note: substantial text overlap with arXiv:1307.266

    Butterfly Factorization

    Full text link
    The paper introduces the butterfly factorization as a data-sparse approximation for the matrices that satisfy a complementary low-rank property. The factorization can be constructed efficiently if either fast algorithms for applying the matrix and its adjoint are available or the entries of the matrix can be sampled individually. For an N×NN \times N matrix, the resulting factorization is a product of O(logN)O(\log N) sparse matrices, each with O(N)O(N) non-zero entries. Hence, it can be applied rapidly in O(NlogN)O(N\log N) operations. Numerical results are provided to demonstrate the effectiveness of the butterfly factorization and its construction algorithms

    Improved analysis of the subsampled randomized Hadamard transform

    Get PDF
    This paper presents an improved analysis of a structured dimension-reduction map called the subsampled randomized Hadamard transform. This argument demonstrates that the map preserves the Euclidean geometry of an entire subspace of vectors. The new proof is much simpler than previous approaches, and it offers---for the first time---optimal constants in the estimate on the number of dimensions required for the embedding.Comment: 8 pages. To appear, Advances in Adaptive Data Analysis, special issue "Sparse Representation of Data and Images." v2--v4 include minor correction
    corecore