130 research outputs found

    Toward incremental FIB aggregation with quick selections (FAQS)

    Full text link
    Several approaches to mitigating the Forwarding Information Base (FIB) overflow problem were developed and software solutions using FIB aggregation are of particular interest. One of the greatest concerns to deploy these algorithms to real networks is their high running time and heavy computational overhead to handle thousands of FIB updates every second. In this work, we manage to use a single tree traversal to implement faster aggregation and update handling algorithm with much lower memory footprint than other existing work. We utilize 6-year realistic IPv4 and IPv6 routing tables from 2011 to 2016 to evaluate the performance of our algorithm with various metrics. To the best of our knowledge, it is the first time that IPv6 FIB aggregation has been performed. Our new solution is 2.53 and 1.75 times as fast as the-state-of-the-art FIB aggregation algorithm for IPv4 and IPv6 FIBs, respectively, while achieving a near-optimal FIB aggregation ratio

    Leveraging Programmable Data Plane For Compressing Forwarding Tables

    Get PDF
    The Forwarding Information Base (FIB) resides in the data plane of a routing device and is used to forward packets to a next-hop, based on packets\u27 destination IP addresses. The constant growth of a FIB forces network operators to spend more resources on maintaining memory with line-rate Longest Prefix Match (LPM) lookup in a FIB, namely, expensive and energy-hungry Ternary Content-Addressable Memory (TCAM) chips. In this work, we review two different approaches used to mitigate the FIB overflow problem. First, we investigate FIB aggregation, i.e., merging adjacent or overlapping routes with the same next-hop while preserving the forwarding behavior of a FIB. We propose a near-optimal algorithm, FIB Aggregation with Quick Selections (FAQS), that minimizes the FIB churn and speeds BGP update processing by more than twice. In the meantime, FAQS preserves a high compression ratio (at most 73\%). FAQS handles BGP updates incrementally, without the need of re-aggregating the entire FIB table. Second, we investigate FIB (or route) caching, when TCAM holds only a portion of a FIB that carries most of the traffic. We leverage the emerging concept of the programmable data plane to propose a Programmable FIB Caching Architecture (PFCA), that allows cache-victim selection at the line rate and significantly reduces the FIB churn compared to FIB aggregation. PFCA achieves 99.8% cache-hit ratio with only 3.3\% of the FIB placed in a FIB cache. Finally, we extend PFCA\u27s design with a novel approach of integrating incremental FIB aggregation and FIB caching. Such integration needed to overcome cache hiding challenge when a less specific prefix in a cache hides a more specific prefix in a secondary FIB table, which leads to incorrect LPM matching at the cache. In Combined FIB Caching and Aggregation (CFCA), cache-hit ratio is maximized up to 99.94% with only 2.5\% entries of the FIB, while the total number of route changes in TCAM is reduced by more than 40\% compared to low-churn FIB aggregation techniques

    Quantitative Verification and Synthesis of Resilient Networks

    Get PDF

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    Building blocks for the internet of things

    Get PDF

    A Content Caching Strategy for Named Data Networking

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Exploiting Data Locality in Dynamic Web Applications

    Get PDF
    The Internet has grown from a static document retrieval system to a dynamic medium where users are both consumers and producers of information. Users may experience above-average website latencies due to the physical distances information must travel. Because user satisfaction is related to a website\u27s responsiveness, e-commerce may be hindered and prevent online businesses from reaching their full potential. This dissertation analyzes how temporal and relational dependencies in web applications limit their ability to become distributed. Two contributions are made, the first showing the location of data inside a datacenter influences the web system\u27s performance, and secondly, that relaxing strict consistency inside the web application at a fine- grained level can greatly lower latencies for geographically diverse users. Experiments are used to show when and how much these optimizations can benefit a dynamic web application

    Campus Telecommunications Systems: Managing Change

    Get PDF
    The purpose of this book is to provide a broadbased understanding of the rapidly changing environment of campus telecommunications. The anticipated audience for this material is the non-technical university administrator who may not have direct responsibility for telecommunications, but has a need to understand the general environment in which his telecommunications manager functions and the basic concepts of the technology. Five topic areas were selected that best cover the preponderance of issues. No attempt has been made to associate or closely coordinate materials from one chapter\u27s subject to that of any other. Each chapter generally stands alone. In total, however, the five chapters address the topics and issues that most often generate inquiries from university administrators outside the telecommunications department. Introduction 1 The Changing Telecommunications Environment 2 Telecommunications Technology and the Campus 3 Student Services 4 Financing a New Telecommunications System . 5 Selecting a Consultant Glossary Inde
    corecore