709 research outputs found

    Biomechanics of Prosthetic Knee Systems : Role of Dampening and Energy Storage Systems

    Get PDF
    One significant drawback of the commercial passive and microprocessored prosthetic devices, the inability of delivering positive energy when needed, is due to the absence of the knee flexion during stance phase. Moreover, consequences such as circumduction and disturbed gait pattern take place due to the improper energy flow at the knee and the absence of the positive energy delivery during the swing phase. Current generation powered design has solved these problems by delivering the needed energy with heavy battery demanding motors, which increase the mass of the device significantly. Hence, the gait quality of transfemoral amputees has not improved significantly in the last 50 years due to the inefficient energy flow distribution causing the patient to hike his/her pelvis, which leads to back pain in the long run. In this context, state-of-art prosthetics technology is trending toward creating energy regenerative devices, which are able to harvest/ return energy during ambulation by a spring mechanism, since a spring not only permits significant power demand reduction but also provides high power-to-weight ratio. This study will examine the sagittal plane knee moment versus knee flexion angle properties robotically, clinically and theoretically to explore the functional stiffness of a healthy knee as well as a prosthetic knee during the energy return and harvest phases of gait. With this intention, a prosthetic knee test method will be developed for investigating the torque-angle properties of the knee by iteratively modifying the hip trajectory until achieving the closest to healthy knee biomechanics by a 3-Degree of Freedom (DOF) Simulator. This research reveals that constant spring stiffness is suboptimal to varying gait requirements for different types of activity, due to the variability of the power requirements of the knee caused by the passive, viscous and elastic characteristics and the activation dependent properties of the muscles. Exploring this variation is crucial for the design of tran

    Biomechanics of Prosthetic Knee Systems : Role of Dampening and Energy Storage Systems

    Get PDF
    One significant drawback of the commercial passive and microprocessored prosthetic devices, the inability of delivering positive energy when needed, is due to the absence of the knee flexion during stance phase. Moreover, consequences such as circumduction and disturbed gait pattern take place due to the improper energy flow at the knee and the absence of the positive energy delivery during the swing phase. Current generation powered design has solved these problems by delivering the needed energy with heavy battery demanding motors, which increase the mass of the device significantly. Hence, the gait quality of transfemoral amputees has not improved significantly in the last 50 years due to the inefficient energy flow distribution causing the patient to hike his/her pelvis, which leads to back pain in the long run. In this context, state-of-art prosthetics technology is trending toward creating energy regenerative devices, which are able to harvest/ return energy during ambulation by a spring mechanism, since a spring not only permits significant power demand reduction but also provides high power-to-weight ratio. This study will examine the sagittal plane knee moment versus knee flexion angle properties robotically, clinically and theoretically to explore the functional stiffness of a healthy knee as well as a prosthetic knee during the energy return and harvest phases of gait. With this intention, a prosthetic knee test method will be developed for investigating the torque-angle properties of the knee by iteratively modifying the hip trajectory until achieving the closest to healthy knee biomechanics by a 3-Degree of Freedom (DOF) Simulator. This research reveals that constant spring stiffness is suboptimal to varying gait requirements for different types of activity, due to the variability of the power requirements of the knee caused by the passive, viscous and elastic characteristics and the activation dependent properties of the muscles. Exploring this variation is crucial for the design of tran

    Effect of Joule Heating on the Reliability of Stamped Metal Land Grid Array Sockets

    Get PDF
    Performance requirements in high end microprocessors have increased tremendously in the last several years, leading to higher I/O counts and interconnect densities. As greater currents pass through the microprocessor interconnect, higher temperatures driven by Joule heating are expected to pose reliability risks to high pin count microprocessor sockets. In this study Joule heating and its effect on the reliability of stamped metal land grid array (LGA) sockets was investigated using a combination of experimental and numerical methods. A methodology to determine socket temperature environments under electrical loading was developed. Knowledge of socket operating temperatures can allow original equipment manufacturers (OEMs) and socket manufacturers to test for and mitigate failure mechanisms under thermal aging. The factors that influence Joule heating and contribute to premature socket failure were examined. Processor temperature, contact alloy and contact pitch were all found to significantly influence socket temperatures driven by Joule heating, with the contact alloy and processor temperature having the most significant effects. The resulting temperatures at higher currents were found to significantly influence the mechanical properties of the polymer housing and adversely affect socket stress relaxation behavior. The properties of the polymer housing were found to be sensitive to temperature owing to its visco-elastic nature. Polymer housing relaxation was therefore identified as a principle contributor to failure in stamped metal sockets under high temperature environments. In the latter part of the study, numerical modeling was used to develop a methodology for assessing socket life expectancy under temperature and deformation loads. A full visco-elastic characterization of the polymer housing was conducted and the measured properties were subsequently used to model socket stress relaxation time to failure. The results of this study indicate that socket temperatures under electrical loading can be significantly higher than those called for by EIA test specifications for LGA sockets. Passing tests that are not stringent enough to account for worst case scenarios can pave the way for field failures. The methodology outlined in this dissertation may be used to determine socket temperature environments and their effect on socket life expectancy

    Teaching agents to learn: from user study to implementation

    Get PDF
    Graphical user interfaces have helped center computer use on viewing and editing, rather than on programming. Yet the need for end-user programming continues to grow. Software developers have responded to the demand with a barrage of customizable applications and operating systems. But the learning curve associated with a high level of customizability-even in GUI-based operating systems-often prevents users from easily modifying their software. Ironically, the question has become, "What is the easiest way for end users to program?" Perhaps the best way to customize a program, given current interface and software design, is for users to annotate tasks-verbally or via the keyboard-as they are executing them. Experiments have shown that users can "teach" a computer most easily by demonstrating a desired behavior. But the teaching approach raises new questions about how the system, as a learning machine, will correlate, generalize, and disambiguate a user's instructions. To understand how best to create a system that can learn, the authors conducted an experiment in which users attempt to train an intelligent agent to edit a bibliography. Armed with the results of these experiments, the authors implemented an interactive machine learning system, which they call Configurable Instructible Machine Architecture. Designed to acquire behavior concepts from few examples, Cima keeps users informed and allows them to influence the course of learning. Programming by demonstration reduces boring, repetitive work. Perhaps the most important lesson the authors learned is the value of involving users in the design process. By testing and critiquing their design ideas, users keep the designers focused on their objective: agents that make computer-based work more productive and more enjoyable

    Software-controlled operand-gating

    Get PDF
    Operand gating is a technique for improving processor energy efficiency by gating off sections of the data path that are unneeded by short-precision (narrow) operands. A method for implementing software-controlled power gating is proposed and evaluated. The instruction set architecture (ISA) is enhanced to include opcodes that specify operand widths (if not already included in the ISA). A compiler or a binary translator uses statically available information to determine initial value ranges. The technique is enhanced through a profile-based analysis that results in the specialization of certain code regions for a given value range. After the analysis, instruction opcodes are assigned using the minimum required width. To evaluate this technique the Alpha instruction set is enhanced to include opcodes for 8, 16, and 32 bit operands. Applying the proposed software technique to the Speclnt95 benchmarks results in energy-delay savings of 14%. When combined with previously proposed hardware-based techniques, the energy-delay benefit is 28%.Peer ReviewedPostprint (published version

    Efficient Storage of Genomic Sequences in High Performance Computing Systems

    Get PDF
    ABSTRACT: In this dissertation, we address the challenges of genomic data storage in high performance computing systems. In particular, we focus on developing a referential compression approach for Next Generation Sequence data stored in FASTQ format files. The amount of genomic data available for researchers to process has increased exponentially, bringing enormous challenges for its efficient storage and transmission. General-purpose compressors can only offer limited performance for genomic data, thus the need for specialized compression solutions. Two trends have emerged as alternatives to harness the particular properties of genomic data: non-referential and referential compression. Non-referential compressors offer higher compression rations than general purpose compressors, but still below of what a referential compressor could theoretically achieve. However, the effectiveness of referential compression depends on selecting a good reference and on having enough computing resources available. This thesis presents one of the first referential compressors for FASTQ files. We first present a comprehensive analytical and experimental evaluation of the most relevant tools for genomic raw data compression, which led us to identify the main needs and opportunities in this field. As a consequence, we propose a novel compression workflow that aims at improving the usability of referential compressors. Subsequently, we discuss the implementation and performance evaluation for the core of the proposed workflow: a referential compressor for reads in FASTQ format that combines local read-to-reference alignments with a specialized binary-encoding strategy. The compression algorithm, named UdeACompress, achieved very competitive compression ratios when compared to the best compressors in the current state of the art, while showing reasonable execution times and memory use. In particular, UdeACompress outperformed all competitors when compressing long reads, typical of the newest sequencing technologies. Finally, we study the main aspects of the data-level parallelism in the Intel AVX-512 architecture, in order to develop a parallel version of the UdeACompress algorithms to reduce the runtime. Through the use of SIMD programming, we managed to significantly accelerate the main bottleneck found in UdeACompress, the Suffix Array Construction

    BRAINSTACK – A Platform for Artificial Intelligence & Machine Learning Collaborative Experiments on a Nano-Satellite

    Get PDF
    Space missions have become more ambitious with exploration targets growing ever distant while simultaneously requiring larger guidance and communication budgets. These conflicting desires of distance and control drive the need for in-situ intelligent decision making to reduce communication and control limitations. While ground based research on Artificial Intelligence and Machine Learning (AI/ML) software modules has grown exponentially, the capacity to experimentally validate such software modules in space in a rapid and inexpensive format has not. To this end, the Nano Orbital Workshop (NOW) group at NASA Ames Research Center is performing flight evaluation tests of ‘commercially’ available bleeding-edge computational platforms via what is programmatically referred to as the BrainStack on the TechEdSat (TES-n) flight series. Processors selected as part of the BrainStack are of ideal size, packaging, and power consumption for easy integration into a cube satellite structure. These experiments have included the evaluation of small, high-performance GPUs and, more recently, neuromorphic processors in LEO operations. Additionally, it is planned to measure the radiation environment these processors experience to understand any degradation or computational artifacts caused by long term space radiation exposure on these novel architectures. This evolving flexible and collaborative environment involving various research teams across NASA and other organizations is intended to be a convenient orbital test platform from which many anticipated future space automation applications may be initially tested

    Satellite on-board processing for earth resources data

    Get PDF
    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented

    Tactile force-sensing for dynamic gripping using piezoelectric force- sensors

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 200
    corecore