216 research outputs found

    An Integrated Message Hiding and Message Extraction Technique for Multimedia Content Using Invisible Watermarking Technique

    Get PDF
    The protection of multimedia data is becoming very important. The protection can be done with encryption. Involving both encryption and compression side-by-side needs more complex algorithms for content retrieval. Reconstructing the compressed encrypted content without much information loss is important. This work improves the ratio-distortion performance and also embedded message in the source image can be extracted for the source image authentication by using invisible watermarking technique. The message can be embedded into and extracted from the source image using watermarking techniques. The watermarked image is compressed by using quantization method to improve the compression ratio. The compressed image is encrypted and decrypted using modulo-256 addition by adding pseudo-random numbers into the image pixels. The encrypted image is splitted into number of files and in the user side using the auxiliary information (AI), file is merged using file adaptive wrapper method to decrypt the source image. Finally, with the use of verification key the embedded message is extracted and the source image is verified. It is shown that this method improves the ratio-distortion performance in compressing a watermarked image and better quality of reconstructed image. In order to further improve the distortion performance and quality of the reconstructed image other compression methods can be used. DOI: 10.17762/ijritcc2321-8169.15054

    Time-of-flight compressed-sensing ultrafast photography for encrypted three-dimensional dynamic imaging

    Get PDF
    We applied compressed ultrafast photography (CUP), a computational imaging technique, to acquire three-dimensional (3D) images. The approach unites image encryption, compression, and acquisition in a single measurement, thereby allowing efficient and secure data transmission. By leveraging the time-of-flight (ToF) information of pulsed light reflected by the object, we can reconstruct a volumetric image (150 mm×150 mm×1050 mm, x × y × z) from a single camera snapshot. Furthermore, we demonstrated high-speed 3D videography of a moving object at 75 frames per second using the ToF-CUP camera

    Color image encryption based on chaotic shit keying with lossless compression

    Get PDF
    In order to protect valuable data from undesirable readers or against illegal reproduction and modifications, there have been various data encryption techniques. Many methods are developed to perform image encryption. The use of chaotic map for image encryption is very effective, since it increase the security, due to its random behavior. The most attractive feature of deterministic chaotic systems is he extremely unexpected and random-look nature of chaotic signals that may lead to novel applications. A novel image encryption algorithm based on compression and hyper chaotic map techniques is proposed. Firstly the image is decomposed into three subbands R, G, and B then each band is compressed using lossless technique. The generated chaotic sequences from the 3D chaotic system are employed to code the compressed results by employing the idea of chaotic shift encoding (CSK) modulation to encode the three bands to generate the encrypted image. The experiments show that the proposed method give good results in term of security, feasibility, and robustness

    Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    Get PDF
    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium

    IoT-Based Multi-Dimensional Chaos Mapping System for Secure and Fast Transmission of Visual Data in Smart Cities

    Get PDF
    A “smart city” sends data from many sensors to a cloud server for local authorities and the public to connect. Smart city residents communicate mostly through images and videos. Many image security algorithms have been proposed to improve locals’ lives, but a high-class redundancy method with a small space requirement is still needed to acquire and protect this sensitive data. This paper proposes an IoT-based multi-dimensional chaos mapping system for secure and fast transmission of visual data in smart cities, which uses the five dimensional Gauss Sine Logistic system to generate hyper-chaotic sequences to encrypt images. The proposed method also uses pixel position permutation and Singular Value Decomposition with Discrete fractional cosine transform to compress and protect the sensitive image data. To increase security, we use a chaotic system to construct the chaotic sequences and a diffusion matrix. Furthermore, numerical simulation results and theoretical evaluations validate the suggested scheme’s security and efficacy after compression encryption.publishedVersio
    corecore