141 research outputs found

    Zero-padding Network Coding and Compressed Sensing for Optimized Packets Transmission

    Get PDF
    Ubiquitous Internet of Things (IoT) is destined to connect everybody and everything on a never-before-seen scale. Such networks, however, have to tackle the inherent issues created by the presence of very heterogeneous data transmissions over the same shared network. This very diverse communication, in turn, produces network packets of various sizes ranging from very small sensory readings to comparatively humongous video frames. Such a massive amount of data itself, as in the case of sensory networks, is also continuously captured at varying rates and contributes to increasing the load on the network itself, which could hinder transmission efficiency. However, they also open up possibilities to exploit various correlations in the transmitted data due to their sheer number. Reductions based on this also enable the networks to keep up with the new wave of big data-driven communications by simply investing in the promotion of select techniques that efficiently utilize the resources of the communication systems. One of the solutions to tackle the erroneous transmission of data employs linear coding techniques, which are ill-equipped to handle the processing of packets with differing sizes. Random Linear Network Coding (RLNC), for instance, generates unreasonable amounts of padding overhead to compensate for the different message lengths, thereby suppressing the pervasive benefits of the coding itself. We propose a set of approaches that overcome such issues, while also reducing the decoding delays at the same time. Specifically, we introduce and elaborate on the concept of macro-symbols and the design of different coding schemes. Due to the heterogeneity of the packet sizes, our progressive shortening scheme is the first RLNC-based approach that generates and recodes unequal-sized coded packets. Another of our solutions is deterministic shifting that reduces the overall number of transmitted packets. Moreover, the RaSOR scheme employs coding using XORing operations on shifted packets, without the need for coding coefficients, thus favoring linear encoding and decoding complexities. Another facet of IoT applications can be found in sensory data known to be highly correlated, where compressed sensing is a potential approach to reduce the overall transmissions. In such scenarios, network coding can also help. Our proposed joint compressed sensing and real network coding design fully exploit the correlations in cluster-based wireless sensor networks, such as the ones advocated by Industry 4.0. This design focused on performing one-step decoding to reduce the computational complexities and delays of the reconstruction process at the receiver and investigates the effectiveness of combined compressed sensing and network coding

    Accelerating Audio Data Analysis with In-Network Computing

    Get PDF
    Digital transformation will experience massive connections and massive data handling. This will imply a growing demand for computing in communication networks due to network softwarization. Moreover, digital transformation will host very sensitive verticals, requiring high end-to-end reliability and low latency. Accordingly, the emerging concept “in-network computing” has been arising. This means integrating the network communications with computing and also performing computations on the transport path of the network. This can be used to deliver actionable information directly to end users instead of raw data. However, this change of paradigm to in-network computing raises disruptive challenges to the current communication networks. In-network computing (i) expects the network to host general-purpose softwarized network functions and (ii) encourages the packet payload to be modified. Yet, today’s networks are designed to focus on packet forwarding functions, and packet payloads should not be touched in the forwarding path, under the current end-to-end transport mechanisms. This dissertation presents fullstack in-network computing solutions, jointly designed from network and computing perspectives to accelerate data analysis applications, specifically for acoustic data analysis. In the computing domain, two design paradigms of computational logic, namely progressive computing and traffic filtering, are proposed in this dissertation for data reconstruction and feature extraction tasks. Two widely used practical use cases, Blind Source Separation (BSS) and anomaly detection, are selected to demonstrate the design of computing modules for data reconstruction and feature extraction tasks in the in-network computing scheme, respectively. Following these two design paradigms of progressive computing and traffic filtering, this dissertation designs two computing modules: progressive ICA (pICA) and You only hear once (Yoho) for BSS and anomaly detection, respectively. These lightweight computing modules can cooperatively perform computational tasks along the forwarding path. In this way, computational virtual functions can be introduced into the network, addressing the first challenge mentioned above, namely that the network should be able to host general-purpose softwarized network functions. In this dissertation, quantitative simulations have shown that the computing time of pICA and Yoho in in-network computing scenarios is significantly reduced, since pICA and Yoho are performed, simultaneously with the data forwarding. At the same time, pICA guarantees the same computing accuracy, and Yoho’s computing accuracy is improved. Furthermore, this dissertation proposes a stateful transport module in the network domain to support in-network computing under the end-to-end transport architecture. The stateful transport module extends the IP packet header, so that network packets carry message-related metadata (message-based packaging). Additionally, the forwarding layer of the network device is optimized to be able to process the packet payload based on the computational state (state-based transport component). The second challenge posed by in-network computing has been tackled by supporting the modification of packet payloads. The two computational modules mentioned above and the stateful transport module form the designed in-network computing solutions. By merging pICA and Yoho with the stateful transport module, respectively, two emulation systems, i.e., in-network pICA and in-network Yoho, have been implemented in the Communication Networks Emulator (ComNetsEmu). Through quantitative emulations, the experimental results showed that in-network pICA accelerates the overall service time of BSS by up to 32.18%. On the other hand, using in-network Yoho accelerates the overall service time of anomaly detection by a maximum of 30.51%. These are promising results for the design and actual realization of future communication networks

    Photonic skin based on polymer embedding of optical sensors and interrogation units

    Get PDF

    IoT for measurements and measurements for IoT

    Get PDF
    The thesis is framed in the broad strand of the Internet of Things, providing two parallel paths. On one hand, it deals with the identification of operational scenarios in which the IoT paradigm could be innovative and preferable to pre-existing solutions, discussing in detail a couple of applications. On the other hand, the thesis presents methodologies to assess the performance of technologies and related enabling protocols for IoT systems, focusing mainly on metrics and parameters related to the functioning of the physical layer of the systems

    A Flexible 2.45-GHz Power Harvesting Wristband with Net System Output from -24.3 dBm of RF Power

    Get PDF
    This paper presents a flexible 2.45-GHz wireless power harvesting wristband that generates a net dc output from a -24.3-dBm RF input. This is the lowest reported system sensitivity for systems comprising a rectenna and impedance-matching power management. A complete system has been implemented comprising: a fabric antenna, a rectifier on rigid substrate, a contactless electrical connection between rigid and flexible subsystems, and power electronics impedance matching. Various fabric and flexible materials are electrically characterized at 2.45 GHz using the two-line and the T-resonator methods. Selected materials are used to design an all-textile antenna, which demonstrates a radiation efficiency above 62% on a phantom irrespective of location, and a stable radiation pattern. The rectifier, designed on a rigid substrate, shows a best-in-class efficiency of 33.6% at -20 dBm. A reliable, efficient, and wideband contactless connection between the fabric antenna and the rectifier is created using broadside-coupled microstrip lines, with an insertion loss below 1 dB from 1.8 to over 10 GHz. A self-powered boost converter with a quiescent current of 150 nA matches the rectenna output with a matching efficiency above 95%. The maximum end-to-end efficiency is 28.7% at -7 dBm. The wristband harvester demonstrates net positive energy harvesting from -24.3 dBm, a 7.3-dB improvement on the state of the art.</p

    Non-invasive inspections: a review on methods and tools

    Get PDF
    Non-Invasive Inspection (NII) has become a fundamental tool in modern industrial maintenance strategies. Remote and online inspection features keep operators fully aware of the health of industrial assets whilst saving money, lives, production and the environment. This paper conducted crucial research to identify suitable sensing techniques for machine health diagnosis in an NII manner, mainly to detect machine shaft misalignment and gearbox tooth damage for different types of machines, even those installed in a hostile environment, using literature on several sensing tools and techniques. The researched tools are critically reviewed based on the published literature. However, in the absence of a formal definition of NII in the existing literature, we have categorised NII tools and methods into two distinct categories. Later, we describe the use of these tools as contact-based, such as vibration, alternative current (AC), voltage and flux analysis, and non-contact-based, such as laser, imaging, acoustic, thermographic and radar, under each category in detail. The unaddressed issues and challenges are discussed at the end of the paper. The conclusions suggest that one cannot single out an NII technique or method to perform health diagnostics for every machine efficiently. There are limitations with all of the reviewed tools and methods, but good results possible if the machine operational requirements and maintenance needs are considered. It has been noted that the sensors based on radar principles are particularly effective when monitoring assets, but further comprehensive research is required to explore the full potential of these sensors in the context of the NII of machine health. Hence it was identified that the radar sensing technique has excellent features, although it has not been comprehensively employed in machine health diagnosis

    A Flexible 2.45-GHz Power Harvesting Wristband with Net System Output from -24.3 dBm of RF Power

    Get PDF
    This is the final version. Available from IEEE via the DOI in this recordThis paper presents a flexible 2.45-GHz wireless power harvesting wristband that generates a net dc output from a -24.3-dBm RF input. This is the lowest reported system sensitivity for systems comprising a rectenna and impedance-matching power management. A complete system has been implemented comprising: a fabric antenna, a rectifier on rigid substrate, a contactless electrical connection between rigid and flexible subsystems, and power electronics impedance matching. Various fabric and flexible materials are electrically characterized at 2.45 GHz using the two-line and the T-resonator methods. Selected materials are used to design an all-textile antenna, which demonstrates a radiation efficiency above 62% on a phantom irrespective of location, and a stable radiation pattern. The rectifier, designed on a rigid substrate, shows a best-in-class efficiency of 33.6% at -20 dBm. A reliable, efficient, and wideband contactless connection between the fabric antenna and the rectifier is created using broadside-coupled microstrip lines, with an insertion loss below 1 dB from 1.8 to over 10 GHz. A self-powered boost converter with a quiescent current of 150 nA matches the rectenna output with a matching efficiency above 95%. The maximum end-to-end efficiency is 28.7% at -7 dBm. The wristband harvester demonstrates net positive energy harvesting from -24.3 dBm, a 7.3-dB improvement on the state of the art.Engineering and Physical Sciences Research Council (EPSRC

    Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring:A Review

    Get PDF
    Condition monitoring can reduce machine breakdown losses, increase productivity and operation safety, and therefore deliver significant benefits to many industries. The emergence of wireless sensor networks (WSNs) with smart processing ability play an ever-growing role in online condition monitoring of machines. WSNs are cost-effective networking systems for machine condition monitoring. It avoids cable usage and eases system deployment in industry, which leads to significant savings. Powering the nodes is one of the major challenges for a true WSN system, especially when positioned at inaccessible or dangerous locations and in harsh environments. Promising energy harvesting technologies have attracted the attention of engineers because they convert microwatt or milliwatt level power from the environment to implement maintenance-free machine condition monitoring systems with WSNs. The motivation of this review is to investigate the energy sources, stimulate the application of energy harvesting based WSNs, and evaluate the improvement of energy harvesting systems for mechanical condition monitoring. This paper overviews the principles of a number of energy harvesting technologies applicable to industrial machines by investigating the power consumption of WSNs and the potential energy sources in mechanical systems. Many models or prototypes with different features are reviewed, especially in the mechanical field. Energy harvesting technologies are evaluated for further development according to the comparison of their advantages and disadvantages. Finally, a discussion of the challenges and potential future research of energy harvesting systems powering WSNs for machine condition monitoring is made

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications
    • …
    corecore