421 research outputs found

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.Comment: submitted to "Physics in Medicine and Biology

    Deep learning versus â„“1\ell^1-minimization for compressed sensing photoacoustic tomography

    Full text link
    We investigate compressed sensing (CS) techniques for reducing the number of measurements in photoacoustic tomography (PAT). High resolution imaging from CS data requires particular image reconstruction algorithms. The most established reconstruction techniques for that purpose use sparsity and â„“1\ell^1-minimization. Recently, deep learning appeared as a new paradigm for CS and other inverse problems. In this paper, we compare a recently invented joint â„“1\ell^1-minimization algorithm with two deep learning methods, namely a residual network and an approximate nullspace network. We present numerical results showing that all developed techniques perform well for deterministic sparse measurements as well as for random Bernoulli measurements. For the deterministic sampling, deep learning shows more accurate results, whereas for Bernoulli measurements the â„“1\ell^1-minimization algorithm performs best. Comparing the implemented deep learning approaches, we show that the nullspace network uniformly outperforms the residual network in terms of the mean squared error (MSE).Comment: This work has been presented at the Joint Photoacoustics Session with the 2018 IEEE International Ultrasonics Symposium Kobe, October 22-25, 201

    Single-pixel camera photoacoustic tomography

    Get PDF
    Since it was first demonstrated more than a decade ago, the single-pixel camera concept has been used in numerous applications in which it is necessary or advantageous to reduce the channel count, cost, or data volume. Here, three-dimensional (3-D), compressed-sensing photoacoustic tomography (PAT) is demonstrated experimentally using a single-pixel camera. A large area collimated laser beam is reflected from a planar Fabry-Pérot ultrasound sensor onto a digital micromirror device, which patterns the light using a scrambled Hadamard basis before it is collected into a single photodetector. In this way, inner products of the Hadamard patterns and the distribution of thickness changes of the FP sensor-induced by the photoacoustic waves-are recorded. The initial distribution of acoustic pressure giving rise to those photoacoustic waves is recovered directly from the measured signals using an accelerated proximal gradient-type algorithm to solve a model-based minimization with total variation regularization. Using this approach, it is shown that 3-D PAT of imaging phantoms can be obtained with compression rates as low as 10%. Compressed sensing approaches to photoacoustic imaging, such as this, have the potential to reduce the data acquisition time as well as the volume of data it is necessary to acquire, both of which are becoming increasingly important in the drive for faster imaging systems giving higher resolution images with larger fields of view

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays

    Compressed-sensing photoacoustic computed tomography in vivo with partially known support

    Get PDF
    Compressed sensing (CS) can recover sparse signals from under-sampled measurements. In this work, we have developed an advanced CS framework for photoacoustic computed tomography (PACT). During the reconstruction, a small part of the nonzero signals’ locations in the transformed sparse domain is used as partially known support (PKS). PACT reconstructions have been performed with under-sampled in vivo image data of human hands and a rat. Compared to PACT with basic CS, PACT with CS-PKS can recover signals using fewer ultrasonic transducer elements and can improve convergence speed, which may ultimately enable high-speed, low-cost PACT for various biomedical applications

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields
    • …
    corecore