672 research outputs found

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin

    One-Bit ExpanderSketch for One-Bit Compressed Sensing

    Full text link
    Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximately k-sparse, this problem is called one-bit compressed sensing and has received a fair amount of attention the last decade. In this paper we obtain the first scheme that achieves almost optimal measurements and sublinear decoding time for one-bit compressed sensing in the non-uniform case. For a large range of parameters, we improve the state of the art in both the number of measurements and the decoding time

    Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes

    Get PDF
    We study the approximate message-passing decoder for sparse superposition coding on the additive white Gaussian noise channel and extend our preliminary work [1]. We use heuristic statistical-physics-based tools such as the cavity and the replica methods for the statistical analysis of the scheme. While superposition codes asymptotically reach the Shannon capacity, we show that our iterative decoder is limited by a phase transition similar to the one that happens in Low Density Parity check codes. We consider two solutions to this problem, that both allow to reach the Shannon capacity: i) a power allocation strategy and ii) the use of spatial coupling, a novelty for these codes that appears to be promising. We present in particular simulations suggesting that spatial coupling is more robust and allows for better reconstruction at finite code lengths. Finally, we show empirically that the use of a fast Hadamard-based operator allows for an efficient reconstruction, both in terms of computational time and memory, and the ability to deal with very large messages.Comment: 40 pages, 18 figure

    Estimating Random Variables from Random Sparse Observations

    Full text link
    Let X_1,...., X_n be a collection of iid discrete random variables, and Y_1,..., Y_m a set of noisy observations of such variables. Assume each observation Y_a to be a random function of some a random subset of the X_i's, and consider the conditional distribution of X_i given the observations, namely \mu_i(x_i)\equiv\prob\{X_i=x_i|Y\} (a posteriori probability). We establish a general relation between the distribution of \mu_i, and the fixed points of the associated density evolution operator. Such relation holds asymptotically in the large system limit, provided the average number of variables an observation depends on is bounded. We discuss the relevance of our result to a number of applications, ranging from sparse graph codes, to multi-user detection, to group testing.Comment: 22 pages, 1 eps figures, invited paper for European Transactions on Telecommunication

    Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation

    Full text link
    We consider the estimation of a signal from the knowledge of its noisy linear random Gaussian projections. A few examples where this problem is relevant are compressed sensing, sparse superposition codes, and code division multiple access. There has been a number of works considering the mutual information for this problem using the replica method from statistical physics. Here we put these considerations on a firm rigorous basis. First, we show, using a Guerra-Toninelli type interpolation, that the replica formula yields an upper bound to the exact mutual information. Secondly, for many relevant practical cases, we present a converse lower bound via a method that uses spatial coupling, state evolution analysis and the I-MMSE theorem. This yields a single letter formula for the mutual information and the minimal-mean-square error for random Gaussian linear estimation of all discrete bounded signals. In addition, we prove that the low complexity approximate message-passing algorithm is optimal outside of the so-called hard phase, in the sense that it asymptotically reaches the minimal-mean-square error. In this work spatial coupling is used primarily as a proof technique. However our results also prove two important features of spatially coupled noisy linear random Gaussian estimation. First there is no algorithmically hard phase. This means that for such systems approximate message-passing always reaches the minimal-mean-square error. Secondly, in a proper limit the mutual information associated to such systems is the same as the one of uncoupled linear random Gaussian estimation
    corecore