2,869 research outputs found

    Experimental Methods Using Photogrammetric Techniques for Parachute Canopy Shape Measurements

    Get PDF
    NASA Langley Research Center in partnership with the U.S. Army Natick Soldier Center has collaborated on the development of a payload instrumentation package to record the physical parameters observed during parachute air drop tests. The instrumentation package records a variety of parameters including canopy shape, suspension line loads, payload 3-axis acceleration, and payload velocity. This report discusses the instrumentation design and development process, as well as the photogrammetric measurement technique used to provide shape measurements. The scaled model tests were conducted in the NASA Glenn Plum Brook Space Propulsion Facility, OH

    Super-resolution:A comprehensive survey

    Get PDF

    Behaviour Profiling using Wearable Sensors for Pervasive Healthcare

    Get PDF
    In recent years, sensor technology has advanced in terms of hardware sophistication and miniaturisation. This has led to the incorporation of unobtrusive, low-power sensors into networks centred on human participants, called Body Sensor Networks. Amongst the most important applications of these networks is their use in healthcare and healthy living. The technology has the possibility of decreasing burden on the healthcare systems by providing care at home, enabling early detection of symptoms, monitoring recovery remotely, and avoiding serious chronic illnesses by promoting healthy living through objective feedback. In this thesis, machine learning and data mining techniques are developed to estimate medically relevant parameters from a participant‘s activity and behaviour parameters, derived from simple, body-worn sensors. The first abstraction from raw sensor data is the recognition and analysis of activity. Machine learning analysis is applied to a study of activity profiling to detect impaired limb and torso mobility. One of the advances in this thesis to activity recognition research is in the application of machine learning to the analysis of 'transitional activities': transient activity that occurs as people change their activity. A framework is proposed for the detection and analysis of transitional activities. To demonstrate the utility of transition analysis, we apply the algorithms to a study of participants undergoing and recovering from surgery. We demonstrate that it is possible to see meaningful changes in the transitional activity as the participants recover. Assuming long-term monitoring, we expect a large historical database of activity to quickly accumulate. We develop algorithms to mine temporal associations to activity patterns. This gives an outline of the user‘s routine. Methods for visual and quantitative analysis of routine using this summary data structure are proposed and validated. The activity and routine mining methodologies developed for specialised sensors are adapted to a smartphone application, enabling large-scale use. Validation of the algorithms is performed using datasets collected in laboratory settings, and free living scenarios. Finally, future research directions and potential improvements to the techniques developed in this thesis are outlined

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Exploring information retrieval using image sparse representations:from circuit designs and acquisition processes to specific reconstruction algorithms

    Get PDF
    New advances in the field of image sensors (especially in CMOS technology) tend to question the conventional methods used to acquire the image. Compressive Sensing (CS) plays a major role in this, especially to unclog the Analog to Digital Converters which are generally representing the bottleneck of this type of sensors. In addition, CS eliminates traditional compression processing stages that are performed by embedded digital signal processors dedicated to this purpose. The interest is twofold because it allows both to consistently reduce the amount of data to be converted but also to suppress digital processing performed out of the sensor chip. For the moment, regarding the use of CS in image sensors, the main route of exploration as well as the intended applications aims at reducing power consumption related to these components (i.e. ADC & DSP represent 99% of the total power consumption). More broadly, the paradigm of CS allows to question or at least to extend the Nyquist-Shannon sampling theory. This thesis shows developments in the field of image sensors demonstrating that is possible to consider alternative applications linked to CS. Indeed, advances are presented in the fields of hyperspectral imaging, super-resolution, high dynamic range, high speed and non-uniform sampling. In particular, three research axes have been deepened, aiming to design proper architectures and acquisition processes with their associated reconstruction techniques taking advantage of image sparse representations. How the on-chip implementation of Compressed Sensing can relax sensor constraints, improving the acquisition characteristics (speed, dynamic range, power consumption) ? How CS can be combined with simple analysis to provide useful image features for high level applications (adding semantic information) and improve the reconstructed image quality at a certain compression ratio ? Finally, how CS can improve physical limitations (i.e. spectral sensitivity and pixel pitch) of imaging systems without a major impact neither on the sensing strategy nor on the optical elements involved ? A CMOS image sensor has been developed and manufactured during this Ph.D. to validate concepts such as the High Dynamic Range - CS. A new design approach was employed resulting in innovative solutions for pixels addressing and conversion to perform specific acquisition in a compressed mode. On the other hand, the principle of adaptive CS combined with the non-uniform sampling has been developed. Possible implementations of this type of acquisition are proposed. Finally, preliminary works are exhibited on the use of Liquid Crystal Devices to allow hyperspectral imaging combined with spatial super-resolution. The conclusion of this study can be summarized as follows: CS must now be considered as a toolbox for defining more easily compromises between the different characteristics of the sensors: integration time, converters speed, dynamic range, resolution and digital processing resources. However, if CS relaxes some material constraints at the sensor level, it is possible that the collected data are difficult to interpret and process at the decoder side, involving massive computational resources compared to so-called conventional techniques. The application field is wide, implying that for a targeted application, an accurate characterization of the constraints concerning both the sensor (encoder), but also the decoder need to be defined

    High-Fidelity MRI Reconstruction Using Adaptive Spatial Attention Selection and Deep Data Consistency Prior

    Get PDF

    Compressive sensing-based data uploading in time-driven public sensing applications

    Get PDF
    Over the last few years, the technology of mobile phones greatly got increased. People gain and upload more and more information through their mobile phones in an easy way. Accordingly, a new sensing technology emerges, referred to as public sensing (PS). The core idea behind PS is to exploit the crowdedness of smart mobile devices to opportunistically provide real-time sensor data considering spatial and environmental dimensions. Recently, PS has been applied in many different application scenarios, such as environmental monitoring, traffic analysis, and indoor mapping. However, PS applications face several challenges. One of the most prominent challenges is the users acceptance to participate in the PS applications. In order to convince users to participate in the PS applications, several incentives mechanisms have been developed. However, the main two requirements - which should be met by any PS application - are the users privacy and the energy costs of running the PS application. In fact, there exist several energy consumers in PS applications. For example, many PS applications require the mobile devices to fix their position and frequently send this position data to the PS server. Similarly, the mobile devices waste energy when they receive sensing queries outside the sensing areas. However, the most energy-expensive task is to frequently acquire and send data to the PS server. In this thesis, we tackle the problem of energy consumption in a special category of PS applications in which the participating mobile devices are periodically queried for sensor data, such as acceleration and images. To reduce the energy overhead of uploading lots of information, we exploit the fact that processing approximately one thousand instructions consumes energy equal to that of transmitting one bit of information. Accordingly, we exploit data compression to reduce the number of bit that will be transmitted from the participating mobile devices to the PS server. Although, he technical literature has many compression methods, such as derivative-based prediction, Cosine transform, Wavelet transform; we designed a framework based on the compressive sensing (CS) theory. In the last decade, CS has been proven as a promising candidate for compressing N-dimensional data. Moreover, it shows satisfactory results when used for inferring missing data. Accordingly, we exploit CS to compress 1D data (e.g. acceleration, gravity) and 2D data (e.g. images). To efficiently utilize the CS method on resources-taxed devices such as the smart mobile devices, we start with identifying the most lightweight measurements matrices which will be implemented on the mobile devices. We examine several matrices, such as the random measurement matrix, the random Gaussian matrix, and the Toeplitz matrix. Our analysis mainly bases on the recovery accuracy and the dissipated energy from the mobile device's battery. Additionally, we perform a comparative study with other compressors, including the cosine transform and the lossless ZIP compressor. To further confirm that CS has a high recovery accuracy, we implemented an activity recognition algorithm at the server side. To this end, we exploit the dynamic time warping (DTW) algorithm as a pattern matching tool between a set of stored patterns and the recovered data. Several experiments have been performed which show the high accuracy of both CS and DTW to recover several activities such as walking, running, and jogging. In terms of energy, CS significantly reduce the battery consumption relative to the other baseline compressors. Finally, we prove the possibility of exploiting the CS-based compression method for manipulating 1D data as well as 2D data, i.e. images. The main challenge is to perform image encoding on the mobile devices, despite the complex matrix operations between the image pixels and the sensing matrices. To overcome this problem, we divide the image into a number of cells and subsequently, we perform the encoding process on each cell individually. Accordingly, the compression process is iteratively achieved. The evaluation results show promising results for 2D compression-based on the CS theory in terms of the saved energy consumption and the recovery accuracy

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    CITRIC: A low-bandwidth wireless camera network platform

    Get PDF
    In this paper, we propose and demonstrate a novel wireless camera network system, called CITRIC. The core component of this system is a new hardware platform that integrates a camera, a frequency-scalable (up to 624 MHz) CPU, 16 MB FLASH, and 64 MB RAM onto a single device. The device then connects with a standard sensor network mote to form a camera mote. The design enables in-network processing of images to reduce communication requirements, which has traditionally been high in existing camera networks with centralized processing. We also propose a back-end client/server architecture to provide a user interface to the system and support further centralized processing for higher-level applications. Our camera mote enables a wider variety of distributed pattern recognition applications than traditional platforms because it provides more computing power and tighter integration of physical components while still consuming relatively little power. Furthermore, the mote easily integrates with existing low-bandwidth sensor networks because it can communicate over the IEEE 802.15.4 protocol with other sensor network platforms. We demonstrate our system on three applications: image compression, target tracking, and camera localization
    corecore