3,943 research outputs found

    Compression via Compressive Sensing : A Low-Power Framework for the Telemonitoring of Multi-Channel Physiological Signals

    Full text link
    Telehealth and wearable equipment can deliver personal healthcare and necessary treatment remotely. One major challenge is transmitting large amount of biosignals through wireless networks. The limited battery life calls for low-power data compressors. Compressive Sensing (CS) has proved to be a low-power compressor. In this study, we apply CS on the compression of multichannel biosignals. We firstly develop an efficient CS algorithm from the Block Sparse Bayesian Learning (BSBL) framework. It is based on a combination of the block sparse model and multiple measurement vector model. Experiments on real-life Fetal ECGs showed that the proposed algorithm has high fidelity and efficiency. Implemented in hardware, the proposed algorithm was compared to a Discrete Wavelet Transform (DWT) based algorithm, verifying the proposed one has low power consumption and occupies less computational resources.Comment: 2013 International Workshop on Biomedical and Health Informatic

    Information Theoretic Limits for Standard and One-Bit Compressed Sensing with Graph-Structured Sparsity

    Full text link
    In this paper, we analyze the information theoretic lower bound on the necessary number of samples needed for recovering a sparse signal under different compressed sensing settings. We focus on the weighted graph model, a model-based framework proposed by Hegde et al. (2015), for standard compressed sensing as well as for one-bit compressed sensing. We study both the noisy and noiseless regimes. Our analysis is general in the sense that it applies to any algorithm used to recover the signal. We carefully construct restricted ensembles for different settings and then apply Fano's inequality to establish the lower bound on the necessary number of samples. Furthermore, we show that our bound is tight for one-bit compressed sensing, while for standard compressed sensing, our bound is tight up to a logarithmic factor of the number of non-zero entries in the signal

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    • …
    corecore