2,221 research outputs found

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    Efficient Data Compression with Error Bound Guarantee in Wireless Sensor Networks

    Get PDF
    We present a data compression and dimensionality reduction scheme for data fusion and aggregation applications to prevent data congestion and reduce energy consumption at network connecting points such as cluster heads and gateways. Our in-network approach can be easily tuned to analyze the data temporal or spatial correlation using an unsupervised neural network scheme, namely the autoencoders. In particular, our algorithm extracts intrinsic data features from previously collected historical samples to transform the raw data into a low dimensional representation. Moreover, the proposed framework provides an error bound guarantee mechanism. We evaluate the proposed solution using real-world data sets and compare it with traditional methods for temporal and spatial data compression. The experimental validation reveals that our approach outperforms several existing wireless sensor network's data compression methods in terms of compression efficiency and signal reconstruction.Comment: ACM MSWiM 201

    Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) for Non-smooth Data Field

    Full text link
    Compressive Sensing (CS) has been applied successfully in a wide variety of applications in recent years, including photography, shortwave infrared cameras, optical system research, facial recognition, MRI, etc. In wireless sensor networks (WSNs), significant research work has been pursued to investigate the use of CS to reduce the amount of data communicated, particularly in data aggregation applications and thereby improving energy efficiency. However, most of the previous work in WSN has used CS under the assumption that data field is smooth with negligible white Gaussian noise. In these schemes signal sparsity is estimated globally based on the entire data field, which is then used to determine the CS parameters. In more realistic scenarios, where data field may have regional fluctuations or it is piecewise smooth, existing CS based data aggregation schemes yield poor compression efficiency. In order to take full advantage of CS in WSNs, we propose an Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) scheme. The proposed schemes dynamically chooses sparsity values based on signal variations in local regions. We prove that A-HDACS enables more sensor nodes to employ CS compared to the schemes that do not adapt to the changing field. The simulation results also demonstrate the improvement in energy efficiency as well as accurate signal recovery

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Energy-efficient node selection algorithms with correlation optimization in wireless sensor networks

    Full text link
    The sensing data of nodes is generally correlated in dense wireless sensor networks, and the active node selection problem aims at selecting a minimum number of nodes to provide required data services within error threshold so as to efficiently extend the network lifetime. In this paper, we firstly propose a new Cover Sets Balance (CSB) algorithm to choose a set of active nodes with the partially ordered tuple (data coverage range, residual energy). Then, we introduce a new Correlated Node Set Computing (CNSC) algorithm to find the correlated node set for a given node. Finally, we propose a High Residual Energy First (HREF) node selection algorithm to further reduce the number of active nodes. Extensive experiments demonstrate that HREF significantly reduces the number of active nodes, and CSB and HREF effectively increase the lifetime of wireless sensor networks compared with related works.This work is supported by the National Science Foundation of China under Grand nos. 61370210 and 61103175, Fujian Provincial Natural Science Foundation of China under Grant nos. 2011J01345, 2013J01232, and 2013J01229, and the Development Foundation of Educational Committee of Fujian Province under Grand no. 2012JA12027. It has also been partially supported by the "Ministerio de Ciencia e Innovacion," through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental," Project TEC2011-27516, and by the Polytechnic University of Valencia, though the PAID-15-11 multidisciplinary Projects.Cheng, H.; Su, Z.; Zhang, D.; Lloret, J.; Yu, Z. (2014). Energy-efficient node selection algorithms with correlation optimization in wireless sensor networks. International Journal of Distributed Sensor Networks. 2014:1-14. https://doi.org/10.1155/2014/576573S1142014Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292-2330. doi:10.1016/j.comnet.2008.04.002Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Diallo, O., Rodrigues, J. J. P. C., Sene, M., & Lloret, J. (2015). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 26(2), 604-620. doi:10.1109/tpds.2013.207Oliveira, L. M. L., Rodrigues, J. J. P. C., Elias, A. G. F., & Zarpelão, B. B. (2014). Ubiquitous Monitoring Solution for Wireless Sensor Networks with Push Notifications and End-to-End Connectivity. Mobile Information Systems, 10(1), 19-35. doi:10.1155/2014/270568Diallo, O., Rodrigues, J. J. P. C., & Sene, M. (2012). Real-time data management on wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(3), 1013-1021. doi:10.1016/j.jnca.2011.12.006Boyinbode, O., Le, H., & Takizawa, M. (2011). A survey on clustering algorithms for wireless sensor networks. International Journal of Space-Based and Situated Computing, 1(2/3), 130. doi:10.1504/ijssc.2011.040339Aslam, N., Phillips, W., Robertson, W., & Sivakumar, S. (2011). A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks. Information Fusion, 12(3), 202-212. doi:10.1016/j.inffus.2009.12.005Karaboga, D., Okdem, S., & Ozturk, C. (2012). Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Networks, 18(7), 847-860. doi:10.1007/s11276-012-0438-zNaeimi, S., Ghafghazi, H., Chow, C.-O., & Ishii, H. (2012). A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks. Sensors, 12(6), 7350-7409. doi:10.3390/s120607350Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Rajagopalan, R., & Varshney, P. (2006). Data-aggregation techniques in sensor networks: a survey. IEEE Communications Surveys & Tutorials, 8(4), 48-63. doi:10.1109/comst.2006.283821Al-Karaki, J. N., Ul-Mustafa, R., & Kamal, A. E. (2009). Data aggregation and routing in Wireless Sensor Networks: Optimal and heuristic algorithms. Computer Networks, 53(7), 945-960. doi:10.1016/j.comnet.2008.12.001Tan, H. O., Korpeoglu, I., & Stojmenovic, I. (2011). Computing Localized Power-Efficient Data Aggregation Trees for Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 22(3), 489-500. doi:10.1109/tpds.2010.68Gao, Q., Zuo, Y., Zhang, J., & Peng, X.-H. (2010). Improving Energy Efficiency in a Wireless Sensor Network by Combining Cooperative MIMO With Data Aggregation. IEEE Transactions on Vehicular Technology, 59(8), 3956-3965. doi:10.1109/tvt.2010.2063719Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793-802. doi:10.1016/j.comcom.2010.10.003Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. doi:10.1109/sahcn.2011.5984932Xu, Y., & Choi, J. (2012). Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields. Automatica, 48(8), 1735-1740. doi:10.1016/j.automatica.2012.05.029Min, J.-K., & Chung, C.-W. (2010). EDGES: Efficient data gathering in sensor networks using temporal and spatial correlations. Journal of Systems and Software, 83(2), 271-282. doi:10.1016/j.jss.2009.08.004Jianzhong Li, & Siyao Cheng. (2012). (ε, δ)-Approximate Aggregation Algorithms in Dynamic Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 385-396. doi:10.1109/tpds.2011.193Hung, C.-C., Peng, W.-C., & Lee, W.-C. (2012). Energy-Aware Set-Covering Approaches for Approximate Data Collection in Wireless Sensor Networks. IEEE Transactions on Knowledge and Data Engineering, 24(11), 1993-2007. doi:10.1109/tkde.2011.224Liu, C., Wu, K., & Pei, J. (2007). An Energy-Efficient Data Collection Framework for Wireless Sensor Networks by Exploiting Spatiotemporal Correlation. IEEE Transactions on Parallel and Distributed Systems, 18(7), 1010-1023. doi:10.1109/tpds.2007.1046Xiaobo Zhang, Heping Wang, Nait-Abdesselam, F., & Khokhar, A. A. (2009). Distortion Analysis for Real-Time Data Collection of Spatially Temporally Correlated Data Fields in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 58(3), 1583-1594. doi:10.1109/tvt.2008.928906Karasabun, E., Korpeoglu, I., & Aykanat, C. (2013). Active node determination for correlated data gathering in wireless sensor networks. Computer Networks, 57(5), 1124-1138. doi:10.1016/j.comnet.2012.11.018Gupta, H., Navda, V., Das, S., & Chowdhary, V. (2008). Efficient gathering of correlated data in sensor networks. ACM Transactions on Sensor Networks, 4(1), 1-31. doi:10.1145/1325651.1325655Campobello, G., Leonardi, A., & Palazzo, S. (2012). Improving Energy Saving and Reliability in Wireless Sensor Networks Using a Simple CRT-Based Packet-Forwarding Solution. IEEE/ACM Transactions on Networking, 20(1), 191-205. doi:10.1109/tnet.2011.2158442Tseng, L.-C., Chien, F.-T., Zhang, D., Chang, R. Y., Chung, W.-H., & Huang, C. (2013). Network Selection in Cognitive Heterogeneous Networks Using Stochastic Learning. IEEE Communications Letters, 17(12), 2304-2307. doi:10.1109/lcomm.2013.102113.131876Rodrigues, J. J. P. C., & Neves, P. A. C. S. (2010). A survey on IP-based wireless sensor network solutions. International Journal of Communication Systems, n/a-n/a. doi:10.1002/dac.1099Aziz, A. A., Sekercioglu, Y. A., Fitzpatrick, P., & Ivanovich, M. (2013). A Survey on Distributed Topology Control Techniques for Extending the Lifetime of Battery Powered Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 15(1), 121-144. doi:10.1109/surv.2012.031612.00124Mehlhorn, K. (1988). A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters, 27(3), 125-128. doi:10.1016/0020-0190(88)90066-xCheng, H., Liu, Q., & Jia, X. (2006). Heuristic algorithms for real-time data aggregation in wireless sensor networks. Proceeding of the 2006 international conference on Communications and mobile computing - IWCMC ’06. doi:10.1145/1143549.1143774Cheng, H., Guo, R., & Chen, Y. (2013). Node Selection Algorithms with Data Accuracy Guarantee in Service-Oriented Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(4), 527965. doi:10.1155/2013/52796
    • …
    corecore