1,318 research outputs found

    Deep Generative Modeling of LiDAR Data

    Get PDF
    Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored on many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a 2D point map. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. We demonstrate significant improvements against state-of-the-art point cloud generation methods. Furthermore, we propose a novel data representation that augments the 2D signal with absolute positional information. We show that this helps robustness to noisy and imputed input; the learned model can recover the underlying lidar scan from seemingly uninformative dataComment: Presented at IROS 201

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    MR image reconstruction using deep density priors

    Full text link
    Algorithms for Magnetic Resonance (MR) image reconstruction from undersampled measurements exploit prior information to compensate for missing k-space data. Deep learning (DL) provides a powerful framework for extracting such information from existing image datasets, through learning, and then using it for reconstruction. Leveraging this, recent methods employed DL to learn mappings from undersampled to fully sampled images using paired datasets, including undersampled and corresponding fully sampled images, integrating prior knowledge implicitly. In this article, we propose an alternative approach that learns the probability distribution of fully sampled MR images using unsupervised DL, specifically Variational Autoencoders (VAE), and use this as an explicit prior term in reconstruction, completely decoupling the encoding operation from the prior. The resulting reconstruction algorithm enjoys a powerful image prior to compensate for missing k-space data without requiring paired datasets for training nor being prone to associated sensitivities, such as deviations in undersampling patterns used in training and test time or coil settings. We evaluated the proposed method with T1 weighted images from a publicly available dataset, multi-coil complex images acquired from healthy volunteers (N=8) and images with white matter lesions. The proposed algorithm, using the VAE prior, produced visually high quality reconstructions and achieved low RMSE values, outperforming most of the alternative methods on the same dataset. On multi-coil complex data, the algorithm yielded accurate magnitude and phase reconstruction results. In the experiments on images with white matter lesions, the method faithfully reconstructed the lesions. Keywords: Reconstruction, MRI, prior probability, machine learning, deep learning, unsupervised learning, density estimationComment: Published in IEEE TMI. Main text and supplementary material, 19 pages tota

    TT-SDF2PC: Registration of Point Cloud and Compressed SDF Directly in the Memory-Efficient Tensor Train Domain

    Full text link
    This paper addresses the following research question: ``can one compress a detailed 3D representation and use it directly for point cloud registration?''. Map compression of the scene can be achieved by the tensor train (TT) decomposition of the signed distance function (SDF) representation. It regulates the amount of data reduced by the so-called TT-ranks. Using this representation we have proposed an algorithm, the TT-SDF2PC, that is capable of directly registering a PC to the compressed SDF by making use of efficient calculations of its derivatives in the TT domain, saving computations and memory. We compare TT-SDF2PC with SOTA local and global registration methods in a synthetic dataset and a real dataset and show on par performance while requiring significantly less resources

    Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks

    Full text link
    Recently, the cycle-consistent generative adversarial networks (CycleGAN) has been widely used for synthesis of multi-domain medical images. The domain-specific nonlinear deformations captured by CycleGAN make the synthesized images difficult to be used for some applications, for example, generating pseudo-CT for PET-MR attenuation correction. This paper presents a deformation-invariant CycleGAN (DicycleGAN) method using deformable convolutional layers and new cycle-consistency losses. Its robustness dealing with data that suffer from domain-specific nonlinear deformations has been evaluated through comparison experiments performed on a multi-sequence brain MR dataset and a multi-modality abdominal dataset. Our method has displayed its ability to generate synthesized data that is aligned with the source while maintaining a proper quality of signal compared to CycleGAN-generated data. The proposed model also obtained comparable performance with CycleGAN when data from the source and target domains are alignable through simple affine transformations
    • …
    corecore