761 research outputs found

    Compressed Sensing with off-axis frequency-shifting holography

    Get PDF
    This work reveals an experimental microscopy acquisition scheme successfully combining Compressed Sensing (CS) and digital holography in off-axis and frequency-shifting conditions. CS is a recent data acquisition theory involving signal reconstruction from randomly undersampled measurements, exploiting the fact that most images present some compact structure and redundancy. We propose a genuine CS-based imaging scheme for sparse gradient images, acquiring a diffraction map of the optical field with holographic microscopy and recovering the signal from as little as 7% of random measurements. We report experimental results demonstrating how CS can lead to an elegant and effective way to reconstruct images, opening the door for new microscopy applications.Comment: vol 35, pp 871-87

    Compressive Holographic Video

    Full text link
    Compressed sensing has been discussed separately in spatial and temporal domains. Compressive holography has been introduced as a method that allows 3D tomographic reconstruction at different depths from a single 2D image. Coded exposure is a temporal compressed sensing method for high speed video acquisition. In this work, we combine compressive holography and coded exposure techniques and extend the discussion to 4D reconstruction in space and time from one coded captured image. In our prototype, digital in-line holography was used for imaging macroscopic, fast moving objects. The pixel-wise temporal modulation was implemented by a digital micromirror device. In this paper we demonstrate 10Ă—10\times temporal super resolution with multiple depths recovery from a single image. Two examples are presented for the purpose of recording subtle vibrations and tracking small particles within 5 ms.Comment: 12 pages, 6 figure

    A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel

    Get PDF
    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition–also dubbed snapshot imaging–has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications

    Subaperture sampling for digital-holography applications involving atmospheric turbulence

    Get PDF
    Using wave-optics simulations, this paper defines what subaperture sampling effectively means for digital-holography applications involving atmospheric turbulence. Throughout, we consider the on-axis phase shifting recording geometry (PSRG) and off-axis PSRG, both with the effects of sensor noise. The results ultimately show that (1) insufficient subaperture sampling manifests as an efficiency loss that limits the achievable signal-to-noise ratio and field-estimated Strehl ratio; (2) digital-holography applications involving atmospheric turbulence require at least three focal-plane array (FPA) pixels per Fried coherence length to meet the Maréchal criterion; and (3) off-axis PSRG is a valid and efficient implementation with minor losses, as compared to on-axis PSRG. Such results will inform future research efforts on how to efficiently use the available FPA pixels

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Non-iterative complex wave-field reconstruction based on Kramers-Kronig relations

    Get PDF
    A new computational imaging method to reconstruct the complex wave-field is reported. Due to the existence of zero frequency component, the measured signal by amplitude modulation of pupil has a spectrum similar to the one of off-axis hologram. The mathematical analogy between them is established in this paper. Based on this observation and analyticity of band-limited signal under any diffraction-limited system, an algorithm from Kramers-Kronig (KK) relations is utilized to recover the phase information only from the intensity patterns. From the sensing side, only two measurements are required at least. From the reconstruction algorithm side, our method is iteration-free and parameter-free, also without any assumption on sample characteristics. It owns several advantages over existing phase imaging methods and could provide a unique perspective to understand current computational imaging methods

    Single-pixel digital holography with phase-encoded illumination

    Get PDF
    We demonstrate imaging of complex amplitude objects through digital holography with phase-structured illumination and bucket detection. The object is sampled with a set of micro-structured phase patterns implemented onto a liquid-crystal spatial light modulator while a bucket detector sequentially records the irradiance fluctuations corresponding to the interference between object and reference beams. Our reconstruction algorithm retrieves the unknown phase information from the full set of photocurrent measurements. Interestingly, the sampling functions can be codified onto the reference beam, so they can be nonlocal with respect to the object. Finally, we show that the system is well-fitted for transmission of the object information through scattering media
    • …
    corecore