7,777 research outputs found

    Astronomical Data Analysis and Sparsity: from Wavelets to Compressed Sensing

    Get PDF
    Wavelets have been used extensively for several years now in astronomy for many purposes, ranging from data filtering and deconvolution, to star and galaxy detection or cosmic ray removal. More recent sparse representations such ridgelets or curvelets have also been proposed for the detection of anisotropic features such cosmic strings in the cosmic microwave background. We review in this paper a range of methods based on sparsity that have been proposed for astronomical data analysis. We also discuss what is the impact of Compressed Sensing, the new sampling theory, in astronomy for collecting the data, transferring them to the earth or reconstructing an image from incomplete measurements.Comment: Submitted. Full paper will figures available at http://jstarck.free.fr/IEEE09_SparseAstro.pd

    Compressed Sensing in Astronomy

    Full text link

    Compressed sensing in astronomy and remote sensing: a data fusion perspective

    Get PDF
    Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression. In a previous study1 we gave new insights into the use of Compressed Sensing (CS) in the scope of astronomical data analysis. More specifically, we showed how CS is flexible enough to account for particular observational strategies such as raster scans. This kind of CS data fusion concept led to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments onboard the Herschel spacecraft which will launched in late 2008/early 2009. In this paper, we extend this work by showing how CS can be effectively used to jointly decode multiple observations at the level of map making. This allows us to directly estimate large areas of the sky from one or several raster scans. Beyond the particular but important Herschel example, we strongly believe that CS can be applied to a wider range of applications such as in earth science and remote sensing where dealing with multiple redundant observations is common place. Simple but illustrative examples are given that show the effectiveness of CS when decoding is made from multiple redundant observations

    Compressive Sensing Using Iterative Hard Thresholding with Low Precision Data Representation: Theory and Applications

    Full text link
    Modern scientific instruments produce vast amounts of data, which can overwhelm the processing ability of computer systems. Lossy compression of data is an intriguing solution, but comes with its own drawbacks, such as potential signal loss, and the need for careful optimization of the compression ratio. In this work, we focus on a setting where this problem is especially acute: compressive sensing frameworks for interferometry and medical imaging. We ask the following question: can the precision of the data representation be lowered for all inputs, with recovery guarantees and practical performance? Our first contribution is a theoretical analysis of the normalized Iterative Hard Thresholding (IHT) algorithm when all input data, meaning both the measurement matrix and the observation vector are quantized aggressively. We present a variant of low precision normalized {IHT} that, under mild conditions, can still provide recovery guarantees. The second contribution is the application of our quantization framework to radio astronomy and magnetic resonance imaging. We show that lowering the precision of the data can significantly accelerate image recovery. We evaluate our approach on telescope data and samples of brain images using CPU and FPGA implementations achieving up to a 9x speed-up with negligible loss of recovery quality.Comment: 19 pages, 5 figures, 1 table, in IEEE Transactions on Signal Processin

    Compressed sensing imaging techniques for radio interferometry

    Get PDF
    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave background radiation, of particular interest for cosmology.Comment: 10 pages, 1 figure. Version 2 matches version accepted for publication in MNRAS. Changes includes: writing corrections, clarifications of arguments, figure update, and a new subsection 4.1 commenting on the exact compliance of radio interferometric measurements with compressed sensin

    Solar hard X-ray imaging by means of Compressed Sensing and Finite Isotropic Wavelet Transform

    Full text link
    This paper shows that compressed sensing realized by means of regularized deconvolution and the Finite Isotropic Wavelet Transform is effective and reliable in hard X-ray solar imaging. The method utilizes the Finite Isotropic Wavelet Transform with Meyer function as the mother wavelet. Further, compressed sensing is realized by optimizing a sparsity-promoting regularized objective function by means of the Fast Iterative Shrinkage-Thresholding Algorithm. Eventually, the regularization parameter is selected by means of the Miller criterion. The method is applied against both synthetic data mimicking the Spectrometer/Telescope Imaging X-rays (STIX) measurements and experimental observations provided by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The performances of the method are compared with the results provided by standard visibility-based reconstruction methods. The results show that the application of the sparsity constraint and the use of a continuous, isotropic framework for the wavelet transform provide a notable spatial accuracy and significantly reduce the ringing effects due to the instrument point spread functions

    Compressed Sensing - A New mode of Measurement

    Get PDF
    After introducing the concept of compressed sensing as a complementary measurement mode to the classical Shannon-Nyquist approach, I discuss some of the drivers, potential challenges and obstacles to its implementation. I end with a speculative attempt to embed compressed sensing as an enabling methodology within the emergence of data-driven discovery. As a consequence I predict the growth of non-nomological sciences where heuristic correlations will find applications but often bypass conventional pure basic and use-inspired basic research stages due to the lack of verifiable hypotheses
    • …
    corecore