270 research outputs found

    Radio frequency fingerprint collaborative intelligent identification using incremental learning

    Get PDF
    For distributed sensor systems using neural networks, each sub-network has a different electromagnetic environment, and these recognition accuracy is also different. In this paper, we propose a distributed sensor system using incremental learning to solve the problem of radio frequency fingerprint identification. First, the intelligent representation of the received signal is linearly fused into a four-channel image. Then, convolutional neural network is trained by using the existing data to obtain the preliminary model of the network, and decision fusion is used to solve the problem in the distributed system. Finally, using new data, instead of retraining the model, we employ incremental learning by fine-tuning the preliminary model. The proposed method can significantly reduce the training time and is adaptive to streaming data. Extensive experiments show that the proposed method is computationally efficient, and also has satisfactory recognition accuracy, especially at low signal-to-noise ratio (SNR) regime

    Radio frequency fingerprint collaborative intelligent blind identification for green radios

    Get PDF
    Radio frequency fingerprint identification (RFFI) technology identifies the emitter by extracting one or more unintentional features of the signal from the emitter. To solve the problem that the traditional deep learning network is not highly adaptable for the contour features extracted from the signal, this paper proposes a novel RFFI method based on a deformable convolutional network. This network makes the convolution operation more biased towards the useful information content in the feature map with higher energy, and ignores part of the background noise information. Moreover, a distributed federated learning system is used to solve the problem of insufficient number of local training samples for a multi-party joint training model without exchanging the original data of the samples. The federated learning center receives the network parameters uploaded by all local models for aggregation, and feeds the aggregated parameters back to each local model for a global update. The proposed blind identification method requires less information and no training sequences and pilots. Thus, it achieves energy-efficiency and spectrum-efficiency. Simulation verifies that the proposed method can achieve better recognition performance and is beneficial for green radio

    Air Force Institute of Technology Research Report 2014

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    NASA Tech Briefs, September 2008

    Get PDF
    Topics covered include: Nanotip Carpets as Antireflection Surfaces; Nano-Engineered Catalysts for Direct Methanol Fuel Cells; Capillography of Mats of Nanofibers; Directed Growth of Carbon Nanotubes Across Gaps; High-Voltage, Asymmetric-Waveform Generator; Magic-T Junction Using Microstrip/Slotline Transitions; On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz; Group-III Nitride Field Emitters; HEMT Amplifiers and Equipment for their On-Wafer Testing; Thermal Spray Formation of Polymer Coatings; Improved Gas Filling and Sealing of an HC-PCF; Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions; Nematic Cells for Digital Light Deflection; Improved Silica Aerogel Composite Materials; Microgravity, Mesh-Crawling Legged Robots; Advanced Active-Magnetic-Bearing Thrust- Measurement System; Thermally Actuated Hydraulic Pumps; A New, Highly Improved Two-Cycle Engine; Flexible Structural-Health-Monitoring Sheets; Alignment Pins for Assembling and Disassembling Structures; Purifying Nucleic Acids from Samples of Extremely Low Biomass; Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery; UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities; Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy; Simplified Modeling of Oxidation of Hydrocarbons; Near-Field Spectroscopy with Nanoparticles Deposited by AFM; Light Collimator and Monitor for a Spectroradiometer; Hyperspectral Fluorescence and Reflectance Imaging Instrument; Improving the Optical Quality Factor of the WGM Resonator; Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking; Transmissive Diffractive Optical Element Solar Concentrators; Delaying Trains of Short Light Pulses in WGM Resonators; Toward Better Modeling of Supercritical Turbulent Mixing; JPEG 2000 Encoding with Perceptual Distortion Control; Intelligent Integrated Health Management for a System of Systems; Delay Banking for Managing Air Traffic; and Spline-Based Smoothing of Airfoil Curvatures

    Academic Year 2019-2020 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    An excerpt from the Dean\u27s Message: There is no place like the Air Force Institute of Technology (AFIT). There is no academic group like AFIT’s Graduate School of Engineering and Management. Although we run an educational institution similar to many other institutions of higher learning, we are different and unique because of our defense-focused graduate-research-based academic programs. Our programs are designed to be relevant and responsive to national defense needs. Our programs are aligned with the prevailing priorities of the US Air Force and the US Department of Defense. Our faculty team has the requisite critical mass of service-tested faculty members. The unique composition of pure civilian faculty, military faculty, and service-retired civilian faculty makes AFIT truly unique, unlike any other academic institution anywhere

    Air Force Institute of Technology Research Report 2013

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here
    • …
    corecore